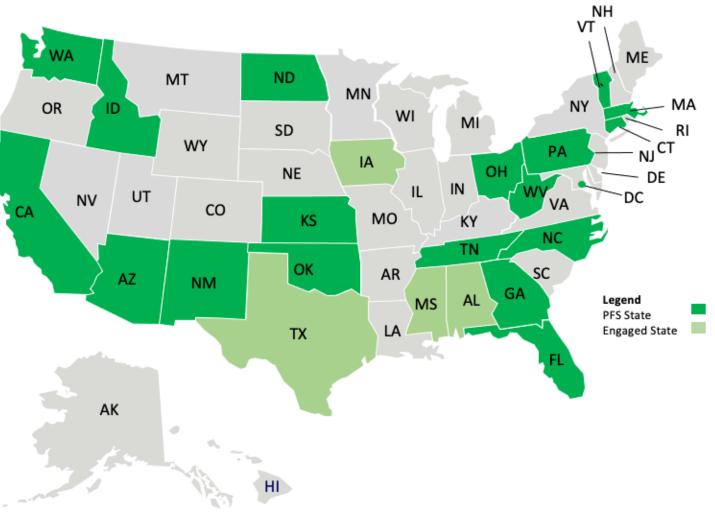
AEGIST: Applications of Enterprise GIS in Transportation TRB AED-40: Geospatial Information Science Update

Joe Hausman, FHWA Office of Planning

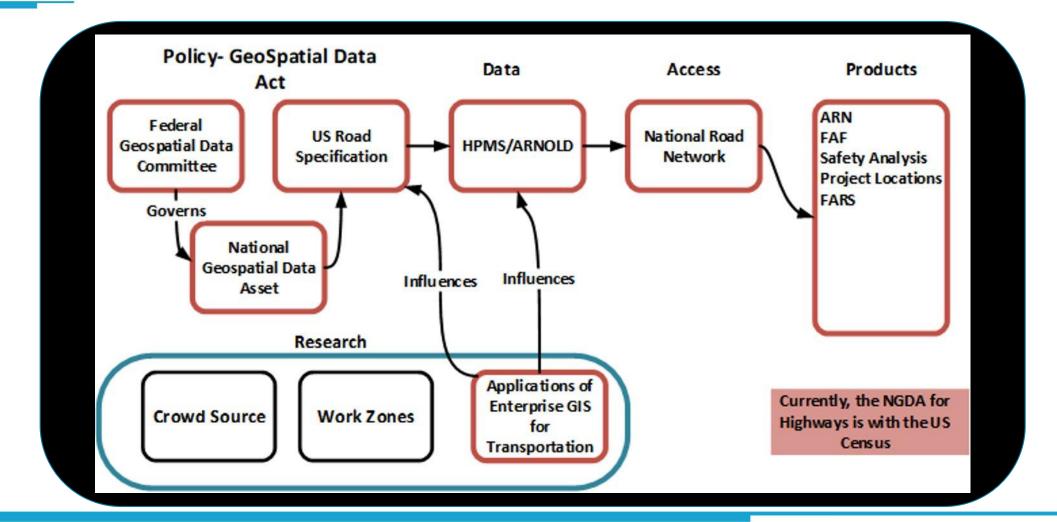
Abhishek Bhargava, Data Scientist


January 2022

For Questions Contact: joseph.hausman@dot.gov

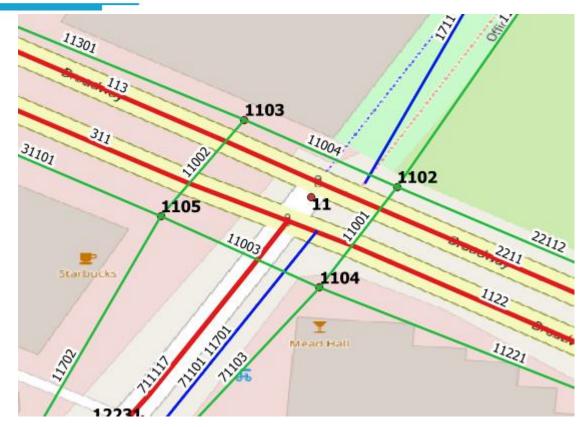
Disclaimer: Information in this deck is subject to change during the AEGIST Project (2019 – 2024)

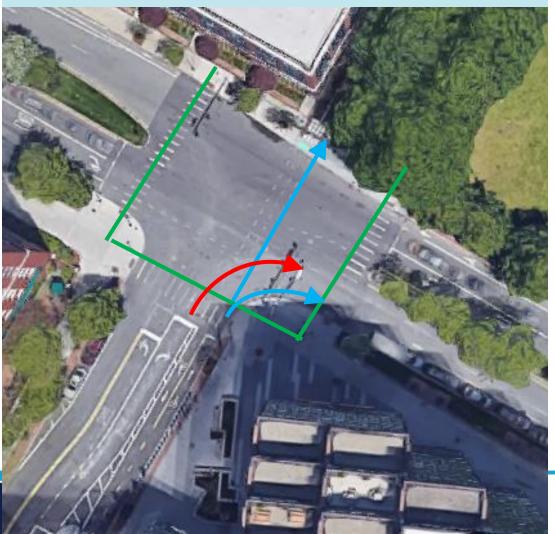
AEGIST Activities Update


- FHWA Office of Planning and Safety
- States DOTs Participating: 18; Engaged 5
- Local Agencies and NG911
 Stakeholders in California, Pennsylvania.
- Federal Lands Management Agency

AEGIST Activities Update

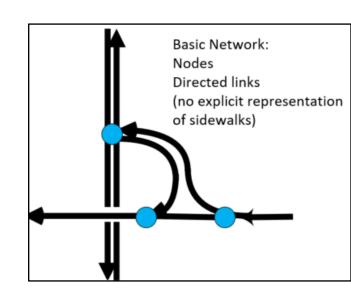
- One Road Centerline State DOT Linear Referencing, Local and Federal Lands
- HPMS 9 and National Road Network (NRN)
- Open Standards Compliant, Machine Readable, Topological Road Network Data Model
- Complete Streets Design and Decision Support to enable Transportation Equity
- Building Information Modeling & Geospatial Information Systems, Digital Twins
- Spatial Data Engineering & Analytics: Spatial Econometric and AI/ML Models
- Enterprise Data Governance (Spatial and associated Non-Spatial Data)

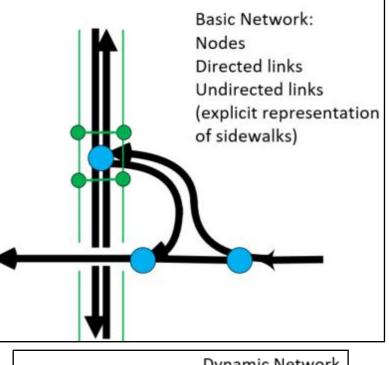

AEGIST Publication Data Model Influencing HPMS/ARNOLD and NRN; PFS States to Review & Comment on the AEGIST Model

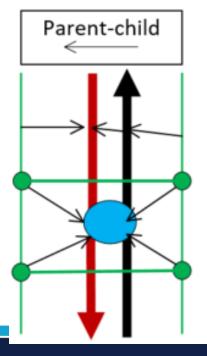

Data Modeling Standards

- All Roads Network of Linearly Referenced Roads (ARNOLD)
- Highway Performance Monitoring System (HPMS), especially HPMS 9.0 Reassessment
- United States Road Specifications (USRS) and US Army Corp of Engineers (USACE) Road Lines
- United States Census Bureau's Road TIGER/Line files
- Model Inventory of Roadway Elements (MIRE)
- Geographic Data Format (GDF) from Open Geospatial Consortium (OGC)
- CityGML from Open Geospatial Consortium (OGC)
- General Modeling Network Specification (GMNS)
- Industry Foundation Classes (IFC) from buildingSMART
- Open Street Maps (OSM) and Shared Streets
- Proprietary standards: Esri Roads & Highways ALRS, Bentley AssetWise LRS (AWLRS), Geomedia, Transcend Intersection Manager, TranCAD, Cube, Emme
- National Bridge Inventory (NBI); Bridge Management Elements (BME); National Bridge Elements (NBE)

AEGIST Incorporating GMNS Standard for Modeling Multimodal, MIRE-Compliant Signalized Intersection from ARNOLD and NG911 Roads

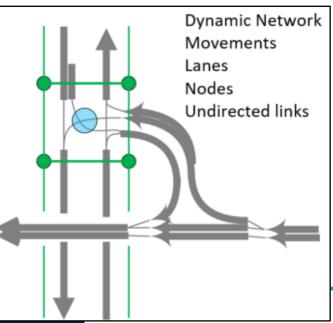


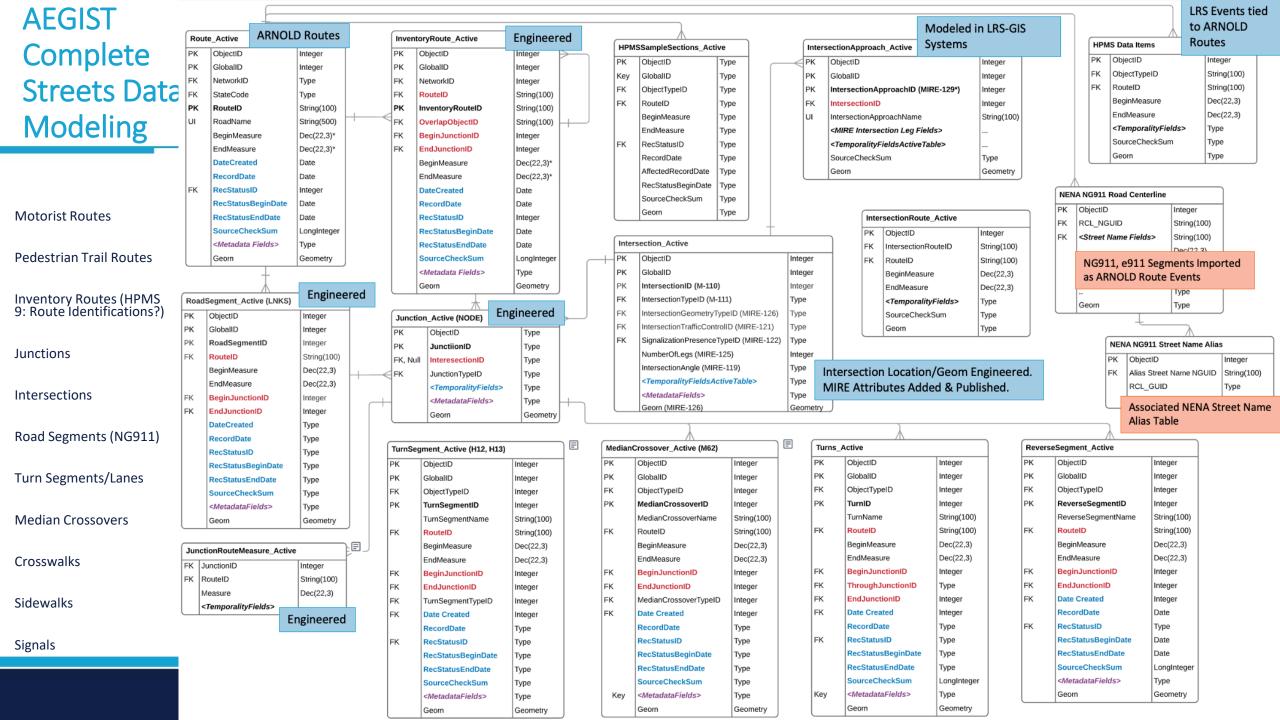

Red: Vehicle links and movements Blue: Cycle track links and movements Green: Pedestrian links and crosswalks **Selected Movements from Ames St.**



with GMNS Multiresolution Representation

- Lane level

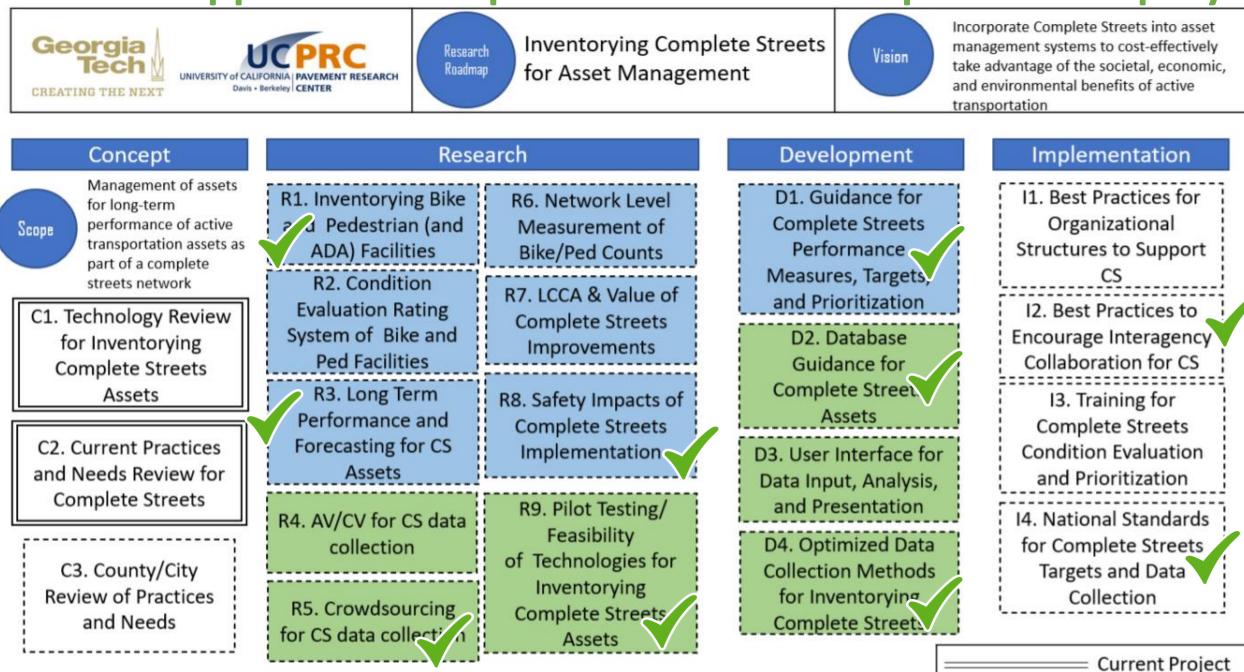


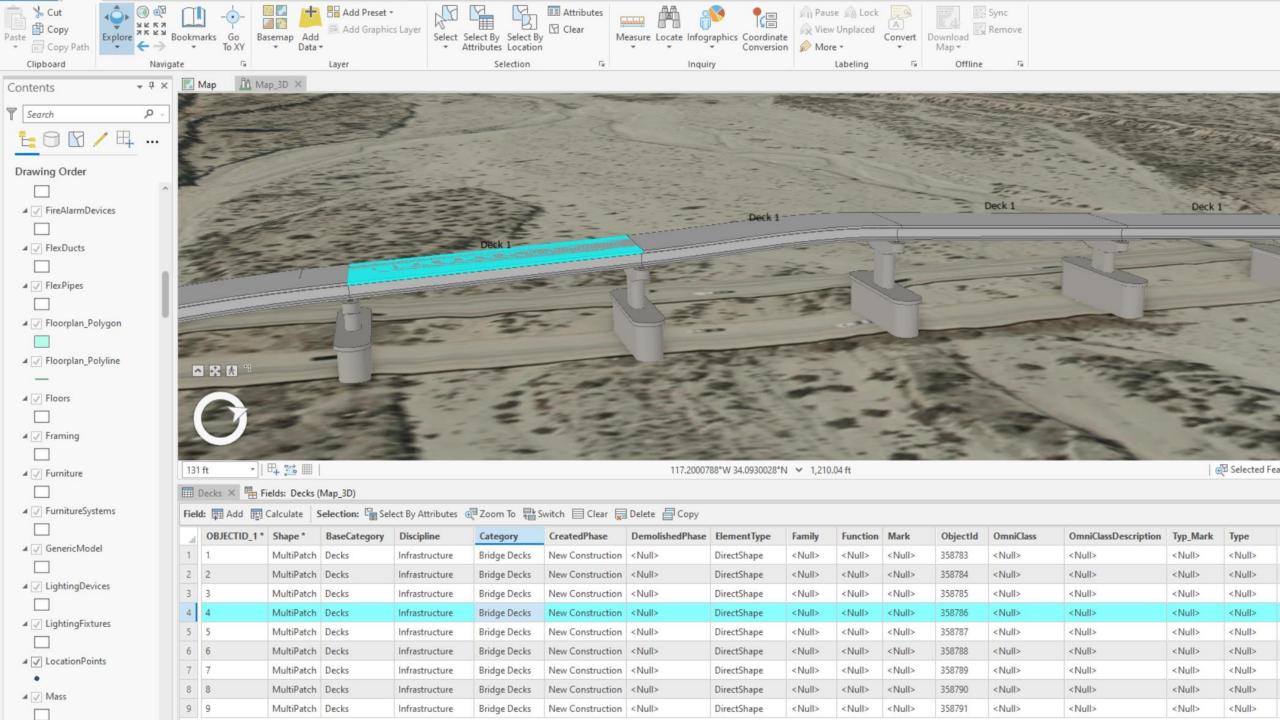


Links may have parent links - Sidewalks to adjacent roads - One side of a road to the other (consider the case where the only link with shapepoints is the red link)

Nodes may have parent nodes -Associate crosswalk entrances with signals

Roads and Intersection Modeling

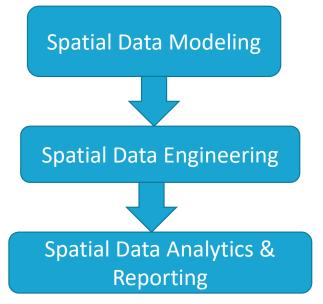

 \equiv NC Intersection & Roads Segments Model (AEGIST) \checkmark


Open in Map Viewer Classic

ABHISHEK Bharga bhargava.abhishek

Ð	Layers	×	9-32		
⊗ Ⅲ	Junctions (Nodes) in Wake County				
55	Road Segments (Edges) in Wake County				
<u>1.00</u>	Intersections in Wake County				
	Intersection Buffer (for Wake)		陸超陸制計部計		
	Junction Route Measures (Wake County)				
	LRS Routes in Wake County				
ڻ -	TrafficSignals			THREE STATES	
۲ ۲	Structures	•••			
47	CountyBoundary	•••		A CRAS	
1	+ Add layer				+
>>					

AEGIST Support for Complete Streets & Transportation Equity



Governing Data Using Spatial & Linear Referencing Systems

Spatial Data Modeling in Transactional Systems of Records (SoRs) and Spatial Data Engineering for Publication to Enterprise Data Warehouses, Databases to support Spatial Data Analytics and Reporting Via the Systems of Engagement (SoE)

Ensuring Transportation Equity by Preparing Spatial Transportation Data for Decision Makers across All Asset Life Cycle Phases & Processes

© Source: Bhargava et.al. (2021). Identifying Data Frameworks and Governance for Civil Integrated Management. FHWA Research. WSP

AEGIST Implementation Activities at PFS States

	СА	СТ	FL	ID	TN	PA	ОН	KS	NM	NC
Spatial Data Governance, Management Strategy, Roadmap, Metadata, Data Portfolio & Library, Workshops				\bigcirc	\odot	\bigcirc	\odot			\bigcirc
Spatial Data Modeling										
Roads Data Modeling & Business Rules DOT, Federal, Local: HPMS, ARNOLD, NG911, MIRE, Intersection	\bigcirc		\oslash			\odot	\odot	\odot	\oslash	\odot
Intersections Data Model HPMS 9.0, MIRE, GDF, IFC Roads Based			\odot				\odot	\odot	\odot	\oslash
Data Quality Automation HPMS, MIRE & Assets	\odot	\oslash		\odot						
Spatial Data Integration and Engineering										
Roads Data Integration, Authoritative Data Mgmt. DOT, Federal, Local Roads Data Sharing & Federation	\odot		\odot					\odot	\bigcirc	
Road Network and Events Data Publication/Sharing Data Model for Data Warehouses. Data Models & Engineering in Data Hubs		\bigcirc		\bigcirc		\bigcirc	\odot			
Spatial Data Analytics										
Spatial Statistics, Econometrics, AI/ML, Optimization Descriptive, Diagnostics, Predictive and Prescriptive Analytics; Image Analysis		\odot	\odot			\odot		\odot		\odot

State DOT Technical Services Activities Summary

Base Period St	ates (Oct 2019 – May 2022)	Coordination Efforts
Connecticut DOT	 Road Network Data Quality Report Generation using FME (including HPMS Data) CTDOT LRS-GIS Data Migration to AEGIST Data Model (formerly NRBM) for Publication & APIs 	
Idaho Transportation Department	 Spatial Data Governance Platform (Data Portfolio/Catalog; Data Engineering and Data Analytics) DOT LRS Routes, FLMA Routes and Local Agency Routes Conflation Tool (Python-Based) 	FHWA BIM Projects: BIM National Strategic Roadmap; Data Governance
Tennessee DOT	 Strategic Roadmap for Spatial Data Management and Governance at Enterprise Level Data Governance Pilot (TENTATIVE): Establishing Enterprise Data Integration, Engineering & Analytics Platforms for Spatial Data Governance. Goal: Eliminate Redundancies in Data Mgmt. 	FHWA BIM Projects: BIM National Strategic Roadmap; Data Governance
Caltrans	 Data Sharing Agreement between Caltrans, CalOES, Counties (NG-911, ARNOLD-HPMS Data) CTDOT LRS-GIS Data Migration to AEGIST Data Model (formerly NRBM) for Publication & APIs 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Pennsylvania	 Traffic Count Site Selection Using GIS Geocoding Data Workflow Automation using Python-Based Geoprocessing Tool Speed Limit Data Quality Review using Routes, Signs, Vertical-Horizontal Curves GIS Data NG911 NENA Discussion and Data Exchange with DOT Data Governance for PennDOT Assets: Traffic & Safety, Projects, Building Information Modeling: Building Spatial Digital Twins with Data from Multiple Systems 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Ohio DOT	 (1) Spatial Data Management and Governance Roadmap: 10 Areas Identified, such as: Routable Network Development for Travel Demand Modeling using DOT & Local Data HPMS 9.0-ARNOLD Rules Compliance, LRS-GIS Database Administration, Data Quality 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot

State DOT Technical Services Activities Summary

Period of Perfo	ormance 1 States (July 2021 – Feb 2023)	Coordination Efforts
New Mexico DOT	 ALRS Review and Comparison with AEGIST Data Model (National Road Network- NRN Data Model) Generating Routes with Z-values using Lidar data Intersection Features Data Engineering and Modeling with Topology and Connectivity using Lidar and Open Street Maps (OSM) data. Pilot Implementation: Limited Study Area. (Semi-Automated Data Engineering/Modeling). Statewide Implementation (Investigating Automation with Lidar Data) 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Washington State DOT	 To be determined Considering: Guidance on how and why to implement dual carriageway option Strategies for local agencies to collect and report all public roads updates and MIRE FDE GIS Applications and Data/System Integration Architecture Strategies for transforming from Mainframe LRS to GIS-Based LRS 	HPMS 9.0, MIRE, National Roads Pilot
Florida DOT	 Intersection Features Data Engineering and Modeling with Topology and Connectivity Dual-Carriageways Data Modeling 	HPMS 9.0, MIRE, National Roads Pilot
North Carolina DOT	 Intersection Features Data Engineering and Modeling with Topology and Connectivity Spatial Data Governance 	HPMS 9.0 National Roads Pilot
Kansas DOT	 Intersection Features Data Engineering and Modeling with Topology and Connectivity Lidar Data Integration into LRS-GIS System and Publication for use by Enterprise Systems. Mobile Lidar Project Tasks: Routes with Z-values from Lidar Data, Creating HSM Road Segments & Calibrating Safety Performance Functions 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot

Speed Limit Data Extraction from Permits PDF Using Computer Vision (Optical Character Recognition)

Speed Limit Permits (Authoritative Source)

Department of Transportation Engineering District 8-0

County	7:	Lanca	aster	
SR:		0741	(Entire	SR)
Speed	Limit			

As a result of an engineering and traffic study, a speed limit(s) on the following section(s) of the subject State-designated highway is hereby established:

From Segment	Offset	To Segment	Offset	MPH	Side	Posting Responsibility
0010	0000	0040	0000	Turnt	back	
0040	0000	0050	1247	35	Both	PennDOT
0050	1247	0090	0977	45	Both	PennDOT
0090	0977	0130	1938	35	Both	East Hempfield
0130	1938	0190	0000	35	Both	Manor Twp.
0190	0000	0210	0306	40	Both	PennDOT
0210	0306	0250	0150	45	Both	PennDOT
0250	0150	0250	2912	40	Both	PennDOT
0250	2912	0260	0000	Null	With SR 0324	
0260	0000	0284	0000	45	Both	PennDOT
0285	0000	0285	1265	45	Descending	PennDOT
0284	0000	0284	1265	45	Ascending	PennDOT
0284	1265	0290	0000	Nu11	With SR 0222	+1
0290	0000	0300	0345	40	Both	PEnnDOT
0300	0345	0320	0804	35	Both	West Lampeter Twp.
0320	0804	0350	2003	40	Both	PennDOT
0350	2003	0390	0000	25	Both	Strasburg Boro.
0390	0000	0400	2233	25	Both	Strasburg Twp.
0400	2233	0530	0870	50	Both	PennDOT
0530	0870	0540	3008 End SR)	35	Both	PennDOT

Scripts and/or models to automate analysis

Process to extract data from PDF, Excel or other static documents

Create tools or processes to sync data among sources or notify when changes occur

```
def MCRegDF(Page1DataSplit, year):
   DF = pd.DataFrame()
   for LineNo in range(3,len(Page1DataSplit)):
        #Regular expression being used to extract a list of tuples by including multiple () extraction brackets
        #Look for A-Z 0 or more times
        #IF you encounter one space, keep looking for A-Z 0 or more times
        #Stop extracting if you encounter space one or more times - But this should only happen after you have ignored
        #space one time. Extract all of these spaces as second value in the tuple
        #Third value in the tuple should include 0-9, encountered 0 or more times AFTER having encountered a series of spaces
       LineContentList = re.findall('([A-Z]*\s[A-Z]*)(\s+)([0-9,]*)',Page1DataSplit[LineNo])
       for item in LineContentList:
            if item[0] != ' ':
                s1 = item[0].strip()
                s2 = item[2].strip()
                s3 = ''
                for i in s2.split(","):
                   s3 = s3 + i
                DF = DF.append({'COUNTY':s1, 'MCReg_'+str(year):s3}, ignore_index=True)
   DF = DF.set index(['COUNTY'])
   return DF
MCReg2013DF = MCRegDF(MCReg2013Page1DataSplit, 2013)
MCReg2014DF = MCRegDF(MCReg2014Page1DataSplit, 2014)
```

California Road Sharing (CaRS)

California Road Sharing (CaRS)

1

1

1

1

1

Coordinate roadway

recommendations

across all levels of

using Standards for

CV/AV and UAS.

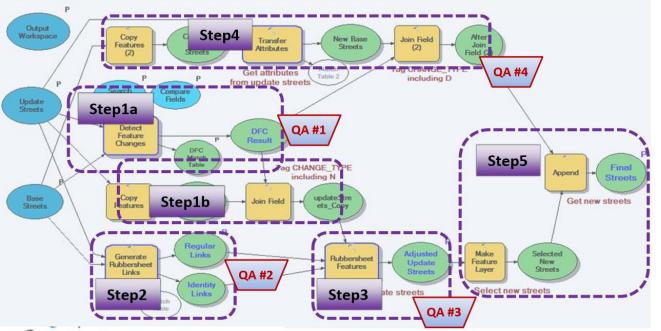
government

Road to Governed California Centerlines

California's road system is managed by various authoritative roads data management government agencies. These include the Caltrans State Department of Transportation (DOT), 58 counties and 482 municipalities using multiple data systems.

Vision: The California Road Sharing (CaRS) Program will establish the Road to Governed California Centerlines. Road data modeling. management and exchange practices will be coordinated across Caltrans, Cal OES and Local agencies. A Statewide Roads Data, Applications and Technology Architecture will be created for management of road centerline geometry and road information. Pilot projects will be done with stakeholders in California and workshops will be held as part of the ongoing FHWA-led AEGIST program involving 18 States, in the U.S. to gather information for successful deployment of an integrated and federated data management system with data modeling, governance, sharing and QA/QC rules..

Benefits to Stakeholders


- Public safety enhancement through data-driven emergency management, preparedness and incident response
- Transportation planning, traffic studies, safety assessments and geo-locating address information (geocoding)
- Linear referencing of infrastructure asset inventory and condition assessment data in Asset Management Systems
- Capital and Maintenance project work data management (linear/spatial referencing)
- Topologically connected routable network development for map-based vehicle routing and analysis of driving directions. distances, roadway mileage
- Deployment of Statewide Roads Data Governance Framework through establishment of National standards-based roads data modeling and QA/QC rules across government agencies
- Development of Digital Twin and AI/ML Applications for Infrastructure Management, CV/AV & Unmanned Aerial Systems

Roads Data Modeling & QA/QC Rules

- Null and Multi-Part Geometry
- Duplicate Vertices
- Centerline Alignment
- Digitization Direction
- Centerline Accuracy, Source
- Self-Intersecting Geometry
- Start/End Nodes Alignment
- Overshoots/Undershoots
- Kickbacks
- Bifurcations Turn Lanes & Ramps Centerlines
- Emergency Crossovers
- Railroad Crossings
- Administrative Boundary Junctions
- Overlap/Concurrent Roads
- Dual-Geometry (Divided/Undivided)
- Roundabouts & Traffic Circles
- Road Identification Information (ID, Name, Class etc.)
- Envisioned **Caltrans System Data Flow** Roads, Roads Data ARNOLD-HPMS **PROGRAM GOALS** Intersections MIRE, NRN & Integration & National Data Modelina Checks Standards Create a governed state-wide App: Roads & 4. Data Modeling and Compliant road centerline dataset to QA/QC Rules Highways Statewide Data meet ARNOLD and NG911 App: 1Integrate roads data requirements Provide mutual benefits to Valid Data State and Local jurisdictions. Other Roads & GIS especially the business users Data Sources involved in highway project (e.g.: Tiger Lines, planning, survey, design, NPMRDS, Open Data that construction, safety, traffic and Jpdated Statew Street Maps etc.) Needs asset management operations Validation E -Valid Data cartographic and data model NG911 GIS Data Support Transportation for the Sharina Nation (TFTN), which promotes a publically GIS Data available, high quality road Cal OES Integration **GIS Data** centerline that is coordinated 2. Data Modeling Checks System & QA/QC Rules 3. Data Modeling Data App: GeoComm & QA/QC Rules Building Information Modeling App: 1Integrate (BIM) for Roads and Assets GIS supporting AI/ML Applications, Jpdated Statewide Data that Needs Validation Local Agency GIS Validated Data: Roads, Data Assets, etc. **GIS Authority** Roads, Assets & Other GIS Data Modeling for Asset. Traffic, Safety Operations 1. Data Modeling & QA/QC Rules Call & Incident Routing, Apps: Multiple (E.g.: Datamark) PSAP & County Coordination **Updated Local GIS Data** Local Agency Systems
 - Source: Abhishek Bhargava. Data Engineering and Architectures for Building Information Modeling in GIS (BIM-GIS)

Idaho Geoprocessing Tool for DOT and Federal Lands Roads Data Conflation

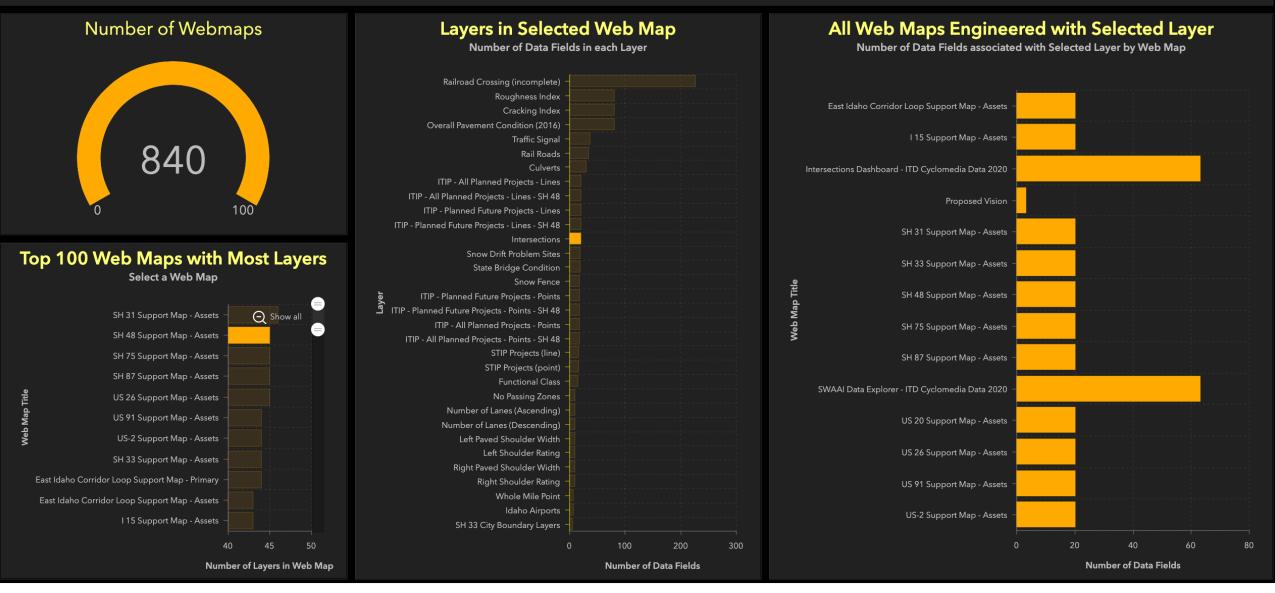
Fiel

🖃 🗞 Workflow Steps

- Step1a DFC and Evaluation
- Pa Step1b Extract Matched Features
- Step2 GRL and Evaluation
- Step2 GRL and Evaluation for Erik
- Step3 Rubbersheeting and Assessment
- De Step4 TA and Evaluation
- Pa Step5 Append N For Final
- Step6a GEL and Evaluation
- Pa Step6b Update Link Info
- Step7 Edgematch

		ABBB HALANA				- Sasantono		
	Field:	Selection	n: 🔄 📑		🖶 Highlig	Ihted: 🖹 🖹 🧔		3
	⊿ OBJECTID	SHAPE	FromDate	ToDate	Road Code	Route ID	Travel Way	System Code
	33209	Polyline ZM	2/7/2017	<null></null>	48997	48997AOH000	Ascending	Off Highway
	44340	Polyline ZM	5/3/2019	<null></null>	15668	15668AFD000	Ascending	Federal Routes
BL	M_clip_sp ×							

4	OBJECTID	Shape	OWNERSHIP	MAINTENANCE_OPERATIONS	FLMA_ROUTE_IDENT	FLMA_REGION
	20	Polyline	BUREAU OF LAND MA	BUREAU OF LAND MANAGEMENT	L134230	ID
-	-					


	BLM_clip_sp	p_DetectFeatu	reCha ×								
Fie	Field: 🐺 🕎 Selection: 🤄 🚏 🚍 💂 🖶 Highlighted: 🖹 🖹										
4	OBJECTID	Shape	UPDATE_FID	BASE_FID	CHANGE_TYPE ·	Shape_Length					
	11	Polyline	20	44340	S_LD	3827.857894					
	34204	Polyline	-1	33209	D	946.67246					

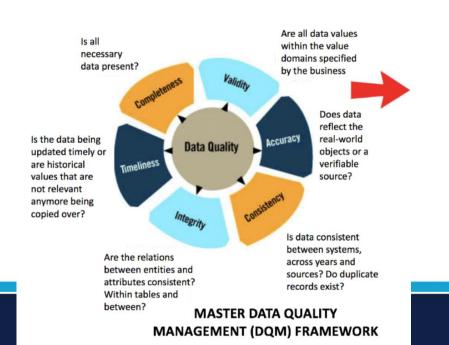
[1] Data Assets Inventory by Performance Goal

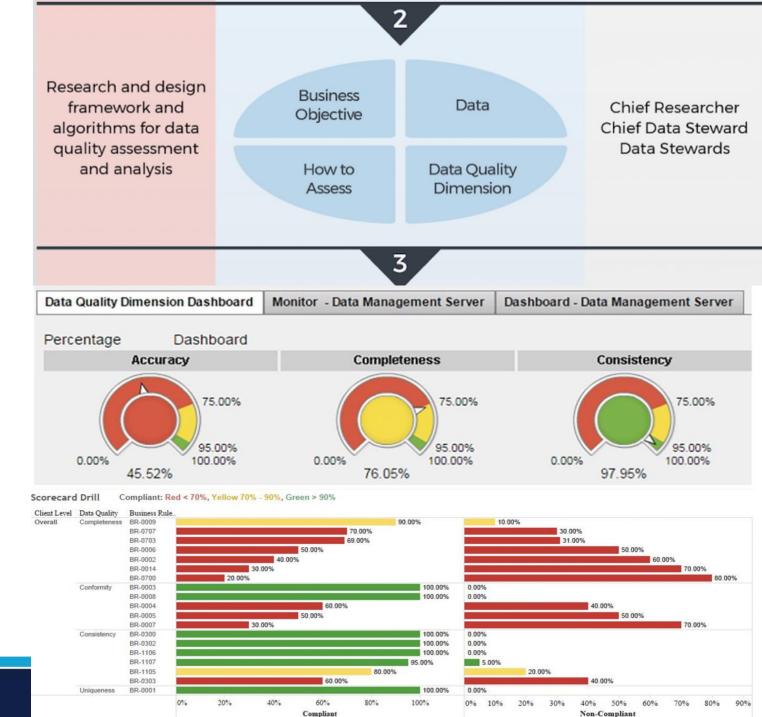
🚊 Idaho Data Portfolio 🔹

≡	Data Assets V Object Type Library (OTL) Data Diction	onary Data Applications 🖪					
	🗄 Grid view 🛎 🔹 🗇 1 hidden field \Xi Filter 🔲 🖸	Grouped by 1 field It Sort 😪 Color 📑 🔩	Share view		TOGAF S	9.2 Standard Co	ompliant
	A Asset ID .	Arr Description v	≣∛ Owners ▼	≣ stewards ▼	≣ Performance Goal ▼	∃፤ Business Domain	Priority •
•	Infrastructure Health Count 11						
28	1 Bridge	As part of national requirements for our bridge inve	DOT Bridge Department	Program Info Coordinato	Infrastructure Health	Asset Management	High
29	Culvert		DOT Asset Management	ITD Districts	Infrastructure Health		
30	Horizontal Curve (Alignment)		HPMS Coordinator Doro	HPMS Coordinator Doro	Infrastructure Health		
31	HPMS 0.1 Mile Segments		HPMS Coordinator Doro	HPMS Coordinator Doro	Infrastructure Health		
32	HPMS Sample Sections		HPMS Coordinator Doro	HPMS Coordinator Doro	Infrastructure Health		
33	Maintenance Work Orders		DOT Asset Management	Maintenance Manager S	Infrastructure Health	Asset Management	Medium
34	Pavement (Road) Surface	Road Surface is maintained on state routes by ITD a	DOT Asset Management	HPMS Coordinator Doro	Infrastructure Health	Asset Management	High
35	Pavement Distress				Infrastructure Health	Asset Management	High
36	Pavement Roughness (IRI)	Pavement ratings gathered from longitudinal road p	DOT Roadway	Pavement Data Manager	Infrastructure Health	Asset Management	High
37	Pavement Structure				Infrastructure Health	Asset Management	High
38	Snow Plow Data	Data generated from snowplow pings process as pa	DOT Maintenance Supp	Maintenance Manager S	Infrastructure Health	Fleet & Equipment	High
+							
	Infrastructure Health Traffic Safety Mobility Count 3						
	Infrastructure Health Mobility Count 3						
•	Traffic Safety Count 4						
45	Crash Data	Records of crashes with vehicle and severity inform	Office of Highway Safet	Office of Highway Safet	Traffic Safety	Management	High
46	Intersection Influence Area	A spatial polygon feature that represents the shape	DOT Asset Management	Not Currently Managed	Traffic Safety	Management	Low
47	Intersection Routes		Not Currently Managed	Not Currently Managed	Traffic Safety	Management	Low
48	Traffic Counts	Raw Traffic data from counters	DOT Traffic Data	Traffic Data Manager Ma	Traffic Safety	Travel Demand Modeling	Hiah

ITD Data Engineering & Governance Dashboard IPLAN Web Maps & Layers

Which Web Maps utilize what data layers?

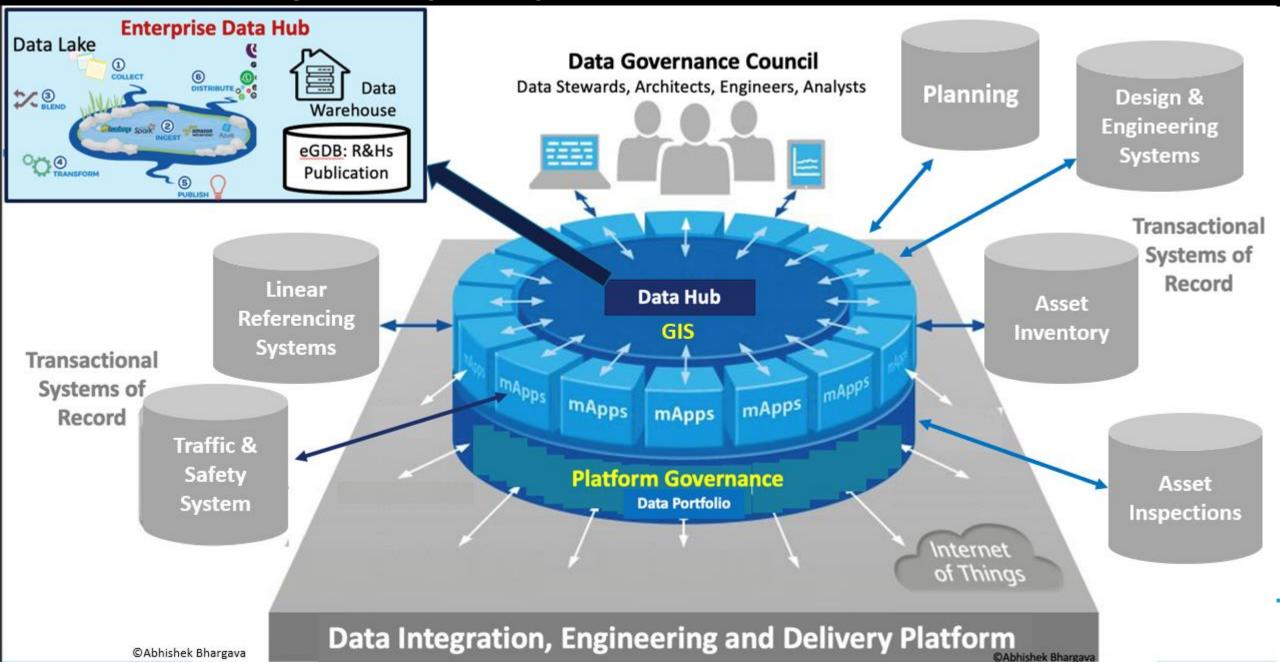

Who owns the Web Map?

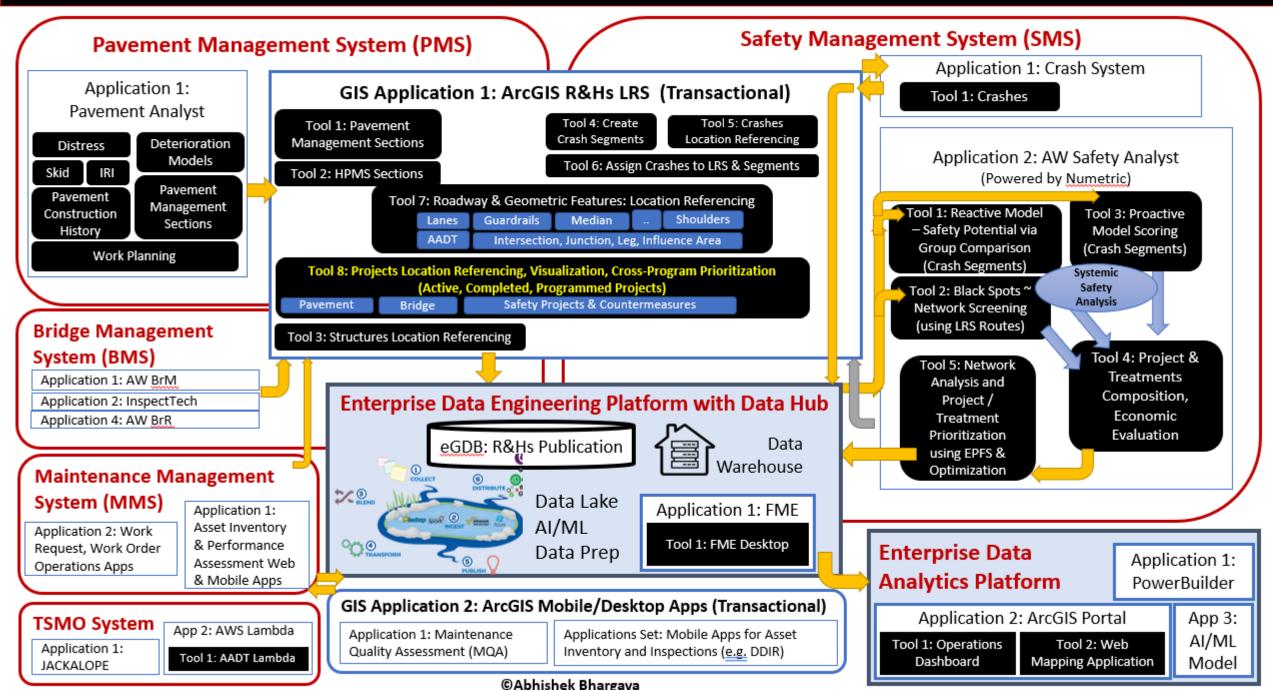

How many and what data fields are used in each of the Web Map layers?

What data assets are the layers associated with?

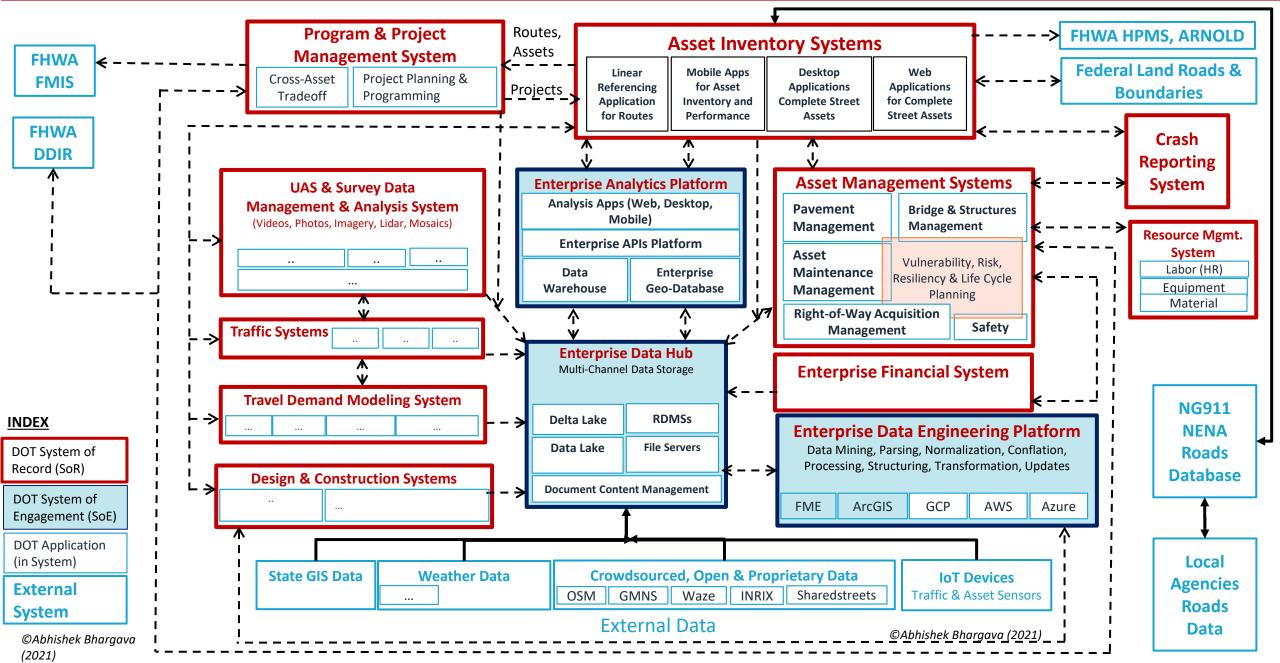
HPMS Data Quality Rules Automation & Dashboards

- 1. Portfolio: Inventoried "data assets"
- 2. Data Models & their objective. Enterprise Data Dictionary, Data Quality Dimensions and rules
- **3.** Automating data processing, integration & quality using Data Science Workbench
- 4. Data Governance Dashboards




AEGIST Complete Street Activities at PFS States

	PA	TN	ОН	СТ	ID	CA	NC	KS	FL	NM
R1. Inventorying Bike and Pedestrian Facilities			\checkmark							
R3. Long Term Performance and Forecasting for CS Assets	\checkmark									
R5. Crowdsourcing for CS Data Collection			\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
R8. Safety Impacts of Complete Streets Implementation	\checkmark									
D1. Guidance for Complete Streets Performance Measures, Targets, Prioritization	\checkmark									
D2. Database Guidance for Complete Street Assets	\checkmark									
D4. Optimized Data Collection Methods for Inventorying Complete Streets			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
I2. Best Practices to Encourage Interagency Collaboration for CS	\checkmark		\checkmark		\checkmark	\checkmark				
I4. National Standards for Complete Streets Targets and Data Collection	\checkmark									


Integrating and Engineering Roads, Assets Data for Complete Street Performance Measures Calculation, Performance Forecasting and Life Cycle Analysis

Asset Inventory and Condition Data Modeling, Integration, Engineering and Analytics using Enterprise GIS

AEGIST Building Information Modeling (BIM) for Asset Inventory (Complete Streets), Performance and Projects Data Management and for Supporting the Performance Forecasting and Asset Life Cycle Analysis

