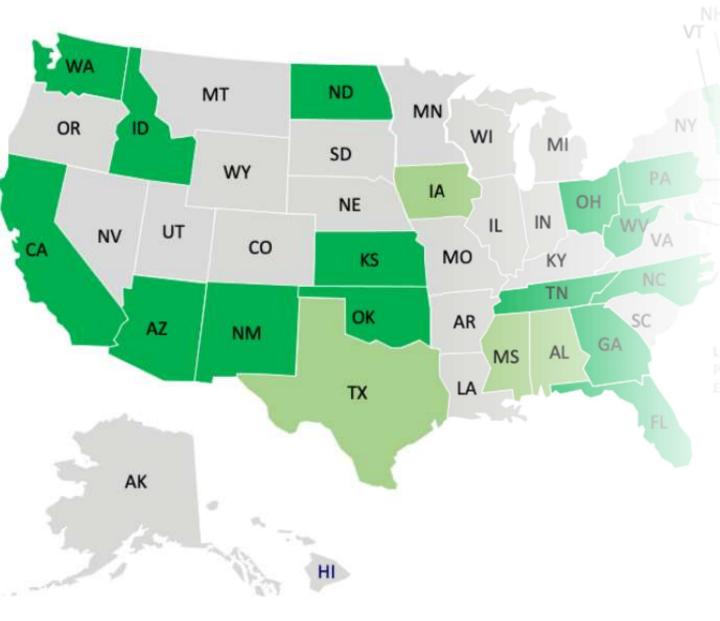
AEGIST: Applications of Enterprise GIS in Transportation RDIP Workshop – West Virginia

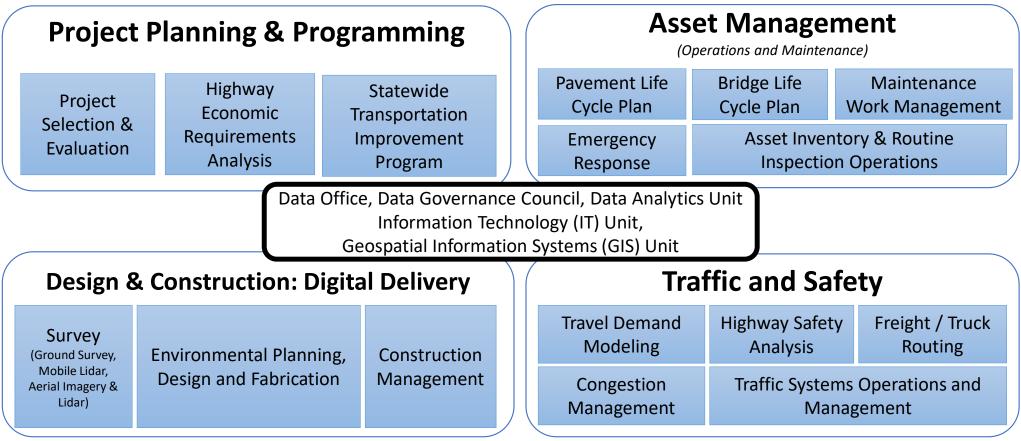

Joe Hausman, FHWA Office of Planning

Abhishek Bhargava, Data Scientist

June 2022

For Questions Contact: joseph.hausman@dot.gov

Disclaimer: Information in this deck is subject to change during the AEGIST Project (2019 – 2024)


Who is a part of AEGIST?

- FHWA Offices of Planning & Safety
- 18 States; 5 more engaged
- Local Agencies
- Federal Lands Management Agency
- National and International
- Standard Development Organizations
- Software vendors, Data vendors and agency consultants

All of the above engaged to deploy best practices and standards using AEGIST pilots at each agency

Why AEGIST?

Enabling Data Offices/Councils & Geospatial Information System Units at State DOTs to meet Agency Performance Goals and Objectives of Business Units at their Agencies

AEGIST Beneficiaries

- Planners (AEGIST modeled data + traditional census data)
 - Land use and transport modeling, impact assessments (resilience, environmental justice), complete streets design, investment analysis
 - Travel demand modeling and vehicle routing
- Roadway Inventory & Geospatial Information Systems Unit
 - Federal reporting: HPMS, ARNOLD, MIRE
 - Data quality automation, GIS products teams
- Safety engineers
 - Roadway Improvement Data Program Deployment
 - Roadway safety analysis, Intersection safety analysis,
 - Pedestrian, Bike network for safety analysis
- Asset Managers
 - Asset Information Management, Data governance (roads/bridges/safety), digital twins, better lifecycle data integration
- Digital Delivery: Design, Construction Management
 - Hand-off As-Built Asset and Roadway Characteristics data to Asset Managers, thereby improving quality of data reported to FHWA

AEGIST Beneficiaries

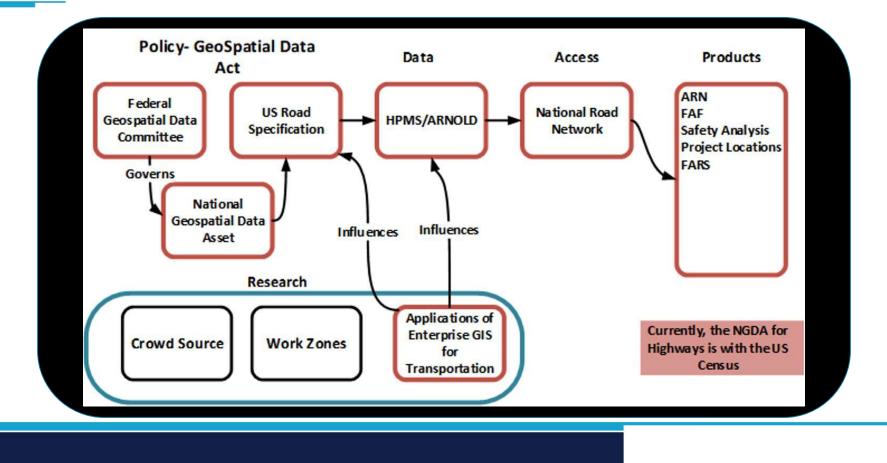
- Federal agencies
 - Better data reporting from States for HPMS 9, MIRE, ARNOLD, Federal-Aid projects data submission
 - Decentralized national road network data creation
 - Development of National standards for road data modeling
- Local agencies
 - Roadway Mileage Reporting
 - Pavement condition information tracking
 - Safety analysis using comprehensive roadway inventory data
 - Transportation improvement programs data standards
- Emergency management agencies
 - NG911 and ARNOLD Road Centerline data integration methodology, approach and proof-of-concept pilots
- Federal Lands Management Agency: Roads data integration
- Private Sector: Governance of Emerging Data Technologies
 - Integrate Connected Vehicle Environment (CVE), Unmanned Aerial Systems and Mobile Survey data in enterprise asset systems

State DOT Technical Activities - Highlights

- 1. Pennsylvania Speed Limit Data Extraction Automation from PDFs; Integrating NG911 & DOT Roads
- 2. California Roads Sharing (CaRS) Data and Application Architecture Integrating NG911 & DOT Roads
- 3. Idaho Data Governance Portal, Federal Lands Roads Data Conflation with DOT and Local Roads
- 4. Connecticut: FME for Roads Data Quality Reporting
- 5. Ohio: Strategic Plan for Road Network Data Management
- 6. Kansas, North Carolina, New Mexico & Florida: Road Segments and Intersections Model for Model Inventory of Roadway Elements (MIRE), Safety Analysis, Freight Analysis, Travel Demand Modeling
- 7. Tennessee: Design to GIS/Asset Management Data Migration
- 8. Washington: Building the Linear Referencing System with State and Local Roads in Roads & Highways

State DOT Technical Services Activities Summary

Base Period St	ates (Oct 2019 – May 2023)	Coordination Efforts
Connecticut DOT	 Road Network Data Quality Report Generation using FME (including HPMS Data) CTDOT LRS-GIS Data Migration to AEGIST Data Model (formerly NRBM) for Publication & APIs 	
Idaho Transportation Department	 Spatial Data Governance Platform (Data Portfolio/Catalog; Data Engineering and Data Analytics) DOT LRS Routes, FLMA Routes and Local Agency Routes Conflation Tool (Python-Based) 	FHWA BIM Projects: BIM National Strategic Roadmap; Data Governance
Tennessee DOT	 Strategic Roadmap for Spatial Data Management and Governance at Enterprise Level BIM-GIS Integration – Roadway Characteristics Data from Design/CAD to Geospatial Information Systems using Digital Twins and Building Information Modeling Tools-Techniques 	FHWA BIM Projects: BIM National Strategic Roadmap; Data Governance
Caltrans	 California Roads Sharing (CaRS): Caltrans, CalOES, Local Agencies (NG-911, ARNOLD-HPMS Data) CTDOT LRS-GIS Data Migration to AEGIST Data Model (formerly NRBM) for Publication & APIs 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Pennsylvania	 Traffic Count Site Selection Using GIS Geocoding Data Workflow Automation using Python-Based Geoprocessing Tool Speed Limit Data Quality Review using Routes, Signs, Vertical-Horizontal Curves GIS Data Local Agency and DOT Roads Integration: NG911 NENA Discussion and Data Exchange with DOT Data Governance for PennDOT Assets: Traffic & Safety, Projects, Building Information Modeling: Building Spatial Digital Twins with Data from Multiple Systems 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Ohio DOT	 (1) Strategic Roadmap for Roads Data Administration using LRS: 10 Areas Identified, such as: Road Network Data Model for Travel Demand Modeling & Safety using DOT & Local Data Complete Streets: Bike Routes and Pedestrian Network HPMS 9.0-ARNOLD Rules Compliance, LRS-GIS Database Administration, Data Quality Open Standards Compliant, Machine Readable, Topological Road Network Data Model 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot


State DOT Technical Services Activities Summary

Period of Perfe	ormance 1 States (July 2021 – May 2023)	Coordination Efforts
New Mexico DOT	 ALRS Review and Comparison with AEGIST Data Model (National Road Network- NRN Data Model) Generating Routes with Z-values using Lidar data Intersection Features Data Engineering and Modeling with Topology and Connectivity using Lidar and Open Street Maps (OSM) data. Pilot Implementation: Limited Study Area. (Semi-Automated Data Engineering/Modeling). Statewide Implementation (Investigating Automation with Lidar Data) 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Washington State DOT	 Building All Roads LRS – State and County Roads All/State Roads Data Modeling in LRS Systems: Frontage Roads, Ramps, Local Crossings, Roundabouts (LRS DB Modernization) Best Practices for Managing Road Geometry in the LRS: All/State Roads Roads Inventory data modeling (e.g. speed limit) & data management (DB modernization) Provisioning Roads data to Stakeholders: Projects 	HPMS 9.0, MIRE, National Roads Pilot
Florida DOT	 Intersection Features Data Engineering and Modeling with Topology and Connectivity: Open Standards Compliant, Machine Readable, Topological Road Network Data Model Dual-Carriageways Data Modeling 	HPMS 9.0, MIRE, National Roads Pilot
North Carolina DOT	(1) Intersection Features Data Engineering and Modeling with Topology and Connectivity: Integrating data from NCDOT LRS, Open Street Maps, Traffic Signals Data for Enterprise Users (e.g. Safety)	HPMS 9.0 National Roads Pilot
Kansas DOT	 Intersection Features Data Engineering and Modeling with Topology and Connectivity Lidar Data Integration into LRS-GIS System and Publication for use by Enterprise Systems. Mobile Lidar Project Tasks: Routes with Z-values from Lidar Data, Creating HSM Road Segments & Calibrating Safety Performance Functions 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot

AEGIST Implementation Activities at PFS States

	СА	СТ	FL	ID	TN	PA	ОН	KS	NM	NC
Spatial Data Governance, Management Strategy, Roadmap, Metadata, Data Portfolio & Library, Workshops				\bigcirc	\odot	\odot	\odot			\bigcirc
Spatial Data Modeling										
Roads Data Modeling & Business Rules DOT, Federal, Local: HPMS, ARNOLD, NG911, MIRE, Intersection	\odot		\oslash			\odot	\odot	\odot	\odot	\odot
Intersections Data Model HPMS 9.0, MIRE, GDF, IFC Roads Based			\oslash				\odot	\odot	\odot	\oslash
Data Quality Automation HPMS, MIRE & Assets	\odot	\odot		\odot						
Spatial Data Integration and Engineering										
Roads Data Integration, Authoritative Data Mgmt. DOT, Federal, Local Roads Data Sharing & Federation	\odot		\odot					\odot	\odot	
Road Network and Events Data Publication/Sharing Data Model for Data Warehouses. Data Models & Engineering in Data Hubs		\odot		\odot		\oslash	\odot			
Spatial Data Analytics										
Spatial Statistics, Econometrics, AI/ML, Optimization Descriptive, Diagnostics, Predictive and Prescriptive Analytics; Image Analysis		\odot	\bigcirc			\odot		\odot		\oslash

AEGIST Publication Data Model Influencing HPMS/ARNOLD and NRN; PFS States to Review & Comment on the AEGIST Model

State DOT Technical Services Examples

- Pennsylvania Speed Limit Data Extraction Automation from PDFs; Integrating NG911 & DOT Roads
- Idaho Data Governance Portal
- California Roads Sharing (CaRS) Data and Application Architecture Integrating NG911 & DOT Roads
- Connecticut: FME for Roads Data Quality Reporting
- Ohio: Strategic Plan for Road Network Data Management
- Kansas, North Carolina, New Mexico & Florida: Road Segments and Intersections for MIRE
- Tennessee: Design to GIS/Asset Management Data Migration

U.S. Department of Transportation Federal Highway Administration

Road Centerlines Modeling

Road Network Data Modeling (Creation) Rules, Standards, Policies and Processes

Roads Data Modeling Administration Levels and Standards in the US

- 1. LRS Route Naming and Identification
- 2. LRS Route Concurrency
- 3. LRS Centerline Modeling Detail (LOD)
- 4. LRS Centerline Accuracy (2D) (LOA)
- 5. LRS Centerline Authoritative Source
- 6. Mileage Accumulation Direction
- 7. Divided-Undivided Highways Modeling
- 8. Linear Referencing Methods (LRM) Maintenance

[3] LRS Centerline Modeling Detail (LOD)

Administration Level 1:

- » Vertices: No established rules for vertex density when editor digitizes centerlines
- » Breaking centerlines: Centerline length and break points not formally managed. No policy or procedure for defining centerline geometries
- » Z-values: Z-values are not modeled in the LRS

Administration Level 2:

- » Vertices: Formal "internal" procedural document exists, that is used to determine vertex density when digitizing centerlines
- » Breaking centerlines: Formal "internal" procedural document exists to determine centerline geometry length and break points
- » **Z-values**: Z-values are not modeled in the LRS, but Z-values extracted from other data sources (e.g.: LiDAR) are integrated with LRS Routes to engineer a 3D linear routes data model. The engineered data model is published for use in specific business processes.

Administration Level 3:

- » Vertices: Formal procedural document to (a) determine vertex density (b) bring external linework into LRS (c) Perform QA/QC checks on external linework to ensure it meets vertex density rules, and (d) perform geometry conflation, correction for external data in accordance with procedural document. (Note: External data source could be NG911, DOT CADD, etc.)
- » **Breaking centerlines:** Formal procedural document to (a) determine centerline geometry length and break points (b) ensure that external linework meets centerline geometry and break points related rules
- » Z-values: Z-values modeled in the LRS, and vertical curve is considered in determining centerline vertex density.

Situation	LOD 0	2	LOD 1 TransportationComplex		LOD 2 - 4 Surface geometry is devided	
[3] Level-of-Detail (LOD) (Geometry) Source Standard: CityGML	provides linear with line objec	ts	deso shap T	rides surface geometry cribing the actual be of the object TransportationComplex Surface geometry) Terrain surface	thematically into TrafficAreas, like: Traffic – cars Traffic – emergency lane Traffic – restricted area Auxiliary - grass	
Use Case		Project Planni	ng	Project Delivery	Operations & Maintenance	
Project Information Modeling in FMIS & DOT PPMS		LOD 0, LOD 1		LOD 0, LOD 1		
Complete Streets for Highway Safety Analysis		LOD-0, 1, 2-4			LOD 0, LOD 1, LOD 2-4	
Asset Inventory & Performance, ARNOLD Reporting					LOD 0	
Travel Demand Modeling, Freight OD-Routes Analysi	S				LOD 0	
Traffic Design Model Simulation				LOD 2-4		
Roadway Geometry (Alignment, Pavement Cross-sec	tion, Profile)			LOD 1, LOD 2-4		
Point Cloud Classification and Asset Data Extraction f	from Lidar				LOD 2-4	

[4] Route Concurrency

Administration Level 1: ...

- » LRS ignores route concurrency and concurrency is not modeled, or concurrency is modeled in events
- » LRS is incapable of storing route concurrencies or route dominance rules

For example: Colorado, Indiana

Administration Level 2: ...

- » Concurrency is stored in the LRS Route Tables, i.e., routes are created for both dominant and subordinate route(s), centerline is associated with these routes (in centerline sequence), and, an event table is created to flag dominant/subordinate route.
- » Because of the way concurrency is setup in the LRS, all business data has to be referenced to the dominant route manually, unless the dominant/subordinate events table is used in the Dominance Rules setup. (due to lack of consistent business rules to automate the identification of dominant route)
- » Event and roadway characteristics data can only be extracted on the dominant route, thus leaving attribute gaps on the subordinate route(s)

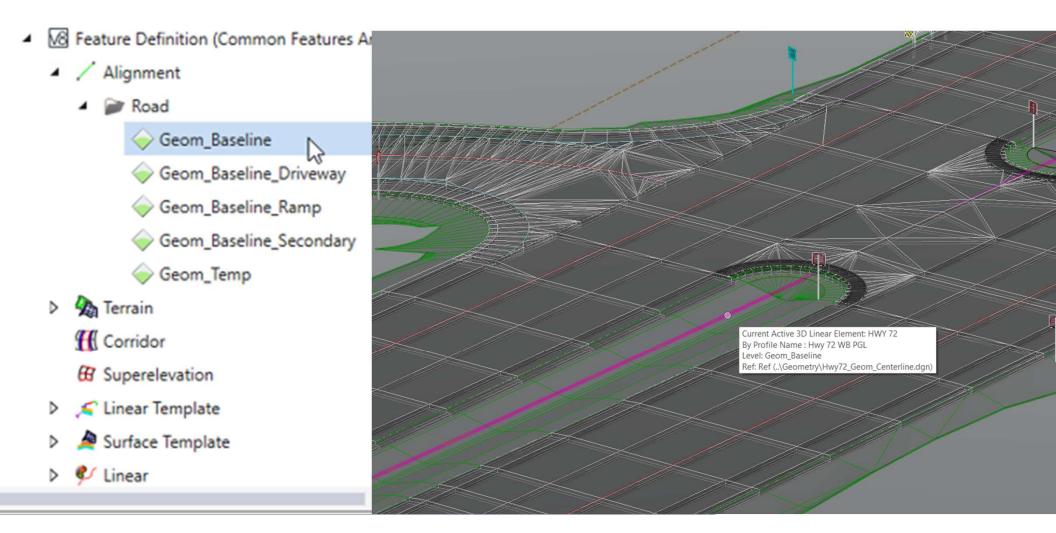
For example: ?

Administration Level 3: ...

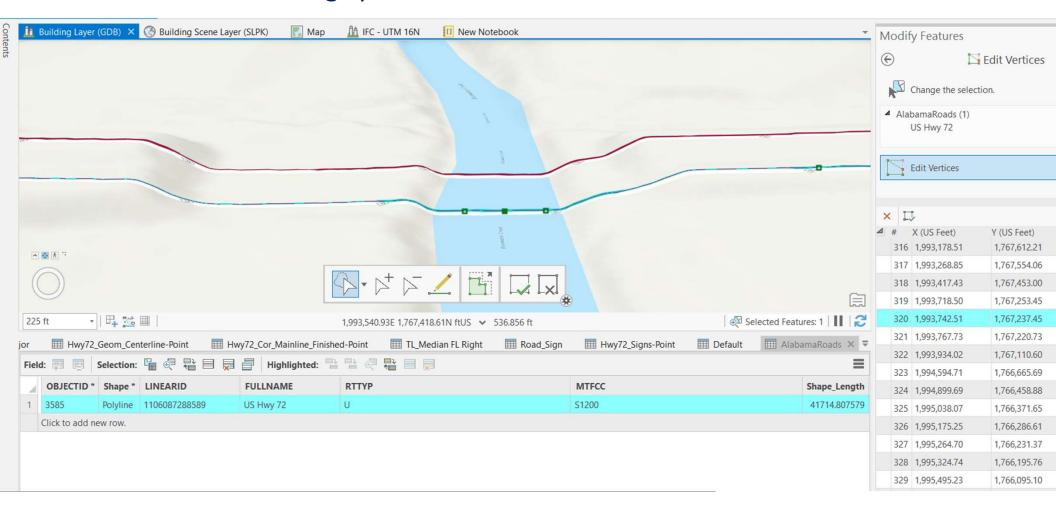
- » Concurrency is stored in the LRS and the system has automated rules to assign business data to the proper dominant route
- » Event and characteristics data can be extracted easily on the dominant route and on the subordinate route(s).

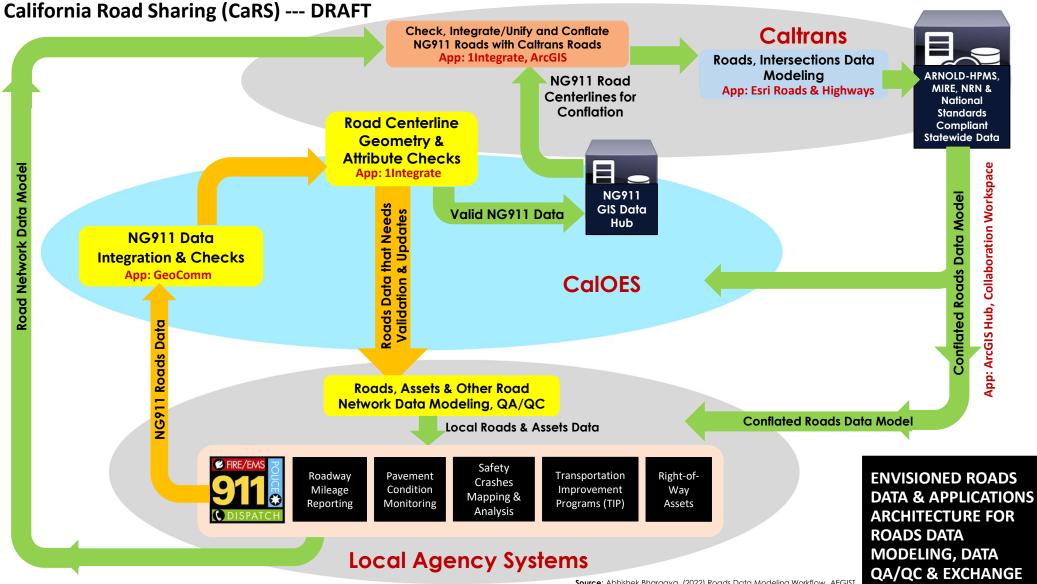
For example: Most States?

AEGIST Guidebook v2.0 Data Modeling Standards


Content Standards

- 1. Highway Performance Monitoring System (HPMS 9), especially HPMS 9.0 Reassessment
- 2. National Bridge Inventory (NBI); Bridge Management Elements (BME); National Bridge Elements (NBE)
- 3. United States Road Specifications (USRS) and US Army Corp of Engineers (USACE) Road Lines
- 4. United States Census Bureau's Road TIGER/Line files
- 5. Model Inventory of Roadway Elements (MIRE)


Geometry Standards


- 1. All Roads Network of Linearly Referenced Roads (ARNOLD)
- 2. Geographic Data Format (GDF) from Open Geospatial Consortium (OGC)
- 3. CityGML from Open Geospatial Consortium (OGC)
- 4. General Modeling Network Specification (GMNS)
- 5. Industry Foundation Classes (IFC) from buildingSMART
- 6. Open Street Maps (OSM) and Shared Streets
- Proprietary standards: Esri Roads & Highways ALRS, Bentley AssetWise LRS (AWLRS), GeoMedia, Rizing Intersection Manager, TransCAD, Cube, Emme, HERE, INRIX etc.

Tennessee DOT: Design Data to GIS and Asset Management

Tennessee DOT: Design Data to GIS and Asset Management R&Hs Linear Referencing System – Route Redlines and Events

Source: Abhishek Bhargava. (2022) Roads Data Modeling Workflow. AEGIST

California Road Sharing (CaRS)

1

1

1

~

Coordinate roadway

Nation (TFTN), which

promotes a publically

across all levels of

using Standards for

CV/AV and UAS.

government

recommendations

Road to Governed California Centerlines

California's road system is managed by various authoritative roads data management government agencies. These include the Caltrans State Department of Transportation (DOT), 58 counties and 482 municipalities using multiple data systems.

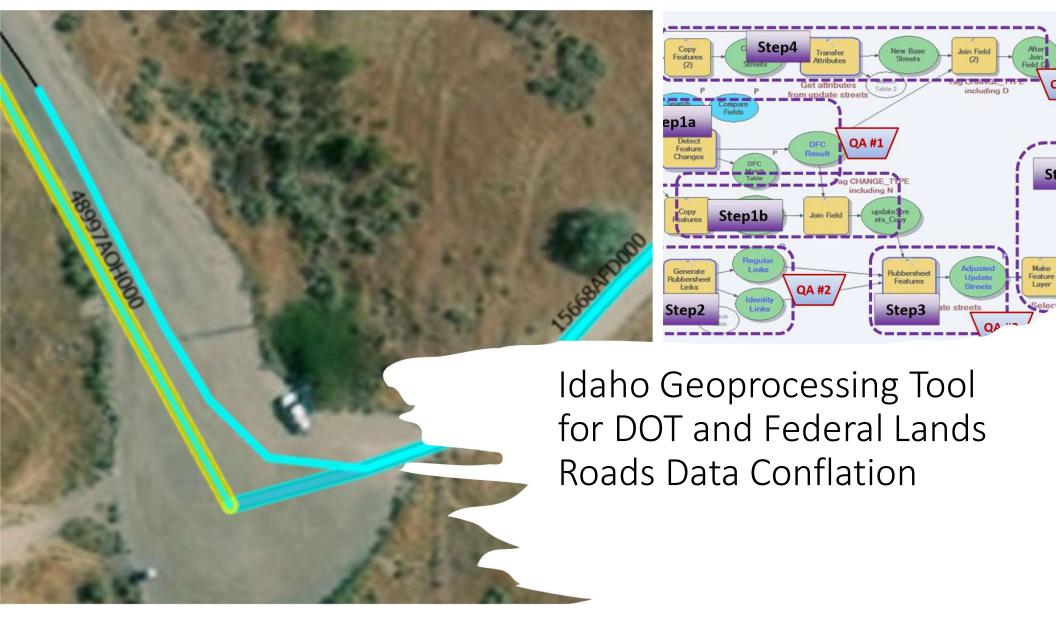
Vision: The California Road Sharing (CaRS) Program will establish the Road to Governed California Centerlines. Road data modeling, management and exchange practices will be coordinated across Caltrans, Cal OES and Local agencies. A Statewide Roads Data, Applications and Technology Architecture will be created for management of road centerline geometry and road information. Pilot projects will be done with stakeholders in California and workshops will be held as part of the ongoing FHWA-led AEGIST program involving 18 States, in the U.S. to gather information for successful deployment of an integrated and federated data management system with data modeling, governance, sharing and QA/QC rules.

Benefits to Stakeholders

- Public safety enhancement through data-driven emergency
- management, preparedness and incident response · Transportation planning, traffic studies, safety assessments and geo-locating address information (geocoding)
- · Linear referencing of infrastructure asset inventory and condition assessment data in Asset Management Systems
- · Capital and Maintenance project work data management (linear/spatial referencing)
- · Topologically connected routable network development for map-based vehicle routing and analysis of driving directions, distances, roadway mileage reporting, freight routing.
- Deployment of Statewide Roads Data Governance Framework through establishment of National standards-based roads data modeling and QA/QC rules across government agencies
- · Development of Digital Twins for Right-of-way Asset Management, Safety Analysis, Transportation Improvement Programs (TIP), CV/AV & Unmanned Aerial Systems

Roads Data Modeling & QA/QC Rules

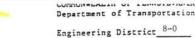
- · Null and Multi-Part Geometry
- Duplicate Vertices
- · Centerline Alignment
- Digitization Direction
- Centerline Accuracy, Source
- · Self-Intersecting Geometry Start/End Nodes Alignment
- · Overshoots/Undershoots
- Kickbacks
- Bifurcations
- Turn Lanes & Ramps Centerlines
- · Emergency Crossovers
- · Railroad Crossings
- · Administrative Boundary Junctions
- Overlap/Concurrent Roads
- Dual-Geometry (Divided/Undivided)
- Roundabouts & Traffic Circles
- · Road Identification Information (ID, Name, Class etc.)



Source: Abhishek Bhargava. Data Engineering and Architectures for Building Information Modeling in GIS (BIM-GIS)

California Road Sharing (CaRS)

Envisioned Data & Application Architecture



Pennsylvania Speed Limit Data Extraction from Permits PDF using Python

'2/86

Speed Limit Permits (Authoritative Source)

County:	Lanca		
SR:	0741	(Entire	SR)
Speed Limit			

As a result of an engineering and traffic study, a speed limit(s) on the following section(s) of the subject State-designated highway is hereby established:

From Segment	Offset To Segment		Offset MPH		Side	Posting Responsibility		
0010	0000	0040	0000	Turnl	back			
0040	0000	0050	1247	35	Both	PennDOT		
0050	1247	0090	0977	45	Both	PennDOT		
0090	0977	0130	1938	35	Both	East Hempfield		
0130	1938	0190	0000	35	Both	Manor Twp.		
0190	0000	0210	0306	40	Both	PennDOT		
0210	0306	0250	0150	45	Both	PennDOT		
0250	0150	0250	2912	40	Both	PennDOT		
0250	2912	0260	0000	Nu11	With SR 0324			
0260	0000	0284	0000	45	Both	PennDOT		
0285	0000	0285	1265	45	Descending	PennDOT		
0284	0000	0284	1265	45	Ascending	PennDOT		
0284	1265	0290	0000	Nu11	With SR 0222			
0290	0000	0300	0345	40	Both	PEnnDOT		
0300	0345	0320	0804	35	Both	West Lampeter Twp.		
0320	0804	0350	2003	40	Both	PennDOT		
0350	2003	0390	0000	25	Both	Strasburg Boro.		
0390	0000	0400	2233	25	Both	Strasburg Twp.		
0400	2233	0530	0870	50	Both	PennDOT		
0530	0870	0540	3008	35	Both	PennDOT		
2.17.041	201621	(End SR)					

Scripts and/or models to automate analysis

Process to extract data from PDF, Excel or other static documents

Create tools or processes to sync data among sources or notify when changes occur

```
def MCRegDF(Page1DataSplit, year):
    DF = pd.DataFrame()
    for LineNo in range(3,len(Page1DataSplit)):
        #Regular expression being used to extract a list of tuples by including multiple () extraction brackets
        #Look for A-Z 0 or more times
        #IF you encounter one space, keep looking for A-Z 0 or more times
       #Stop extracting if you encounter space one or more times - But this should only happen after you have ignored
        #space one time. Extract all of these spaces as second value in the tuple
        #Third value in the tuple should include 0-9, encountered 0 or more times AFTER having encountered a series of spaces
        LineContentList = re.findall('([A-Z]*\s[A-Z]*)(\s+)([0-9,]*)',Page1DataSplit[LineNo])
        for item in LineContentList:
            if item[0] != ' ':
                s1 = item[0].strip()
                s2 = item[2].strip()
                s3 = ''
                for i in s2.split(","):
                    s3 = s3 + i
                DF = DF.append({'COUNTY':s1, 'MCReg_'+str(year):s3}, ignore_index=True)
    DF = DF.set_index(['COUNTY'])
    return DF
MCReg2013DF = MCRegDF(MCReg2013Page1DataSplit, 2013)
MCReg2014DF = MCRegDF(MCReg2014Page1DataSplit, 2014)
```

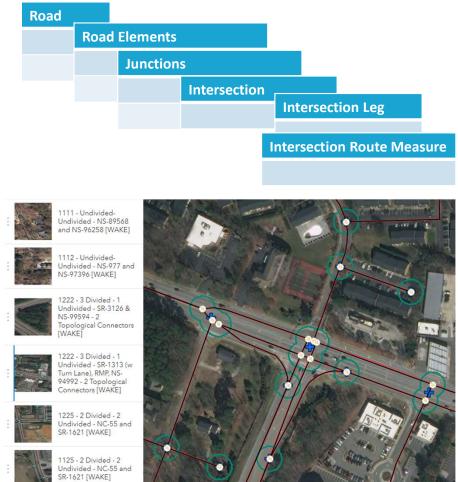
U.S. Department of Transportation Federal Highway Administration

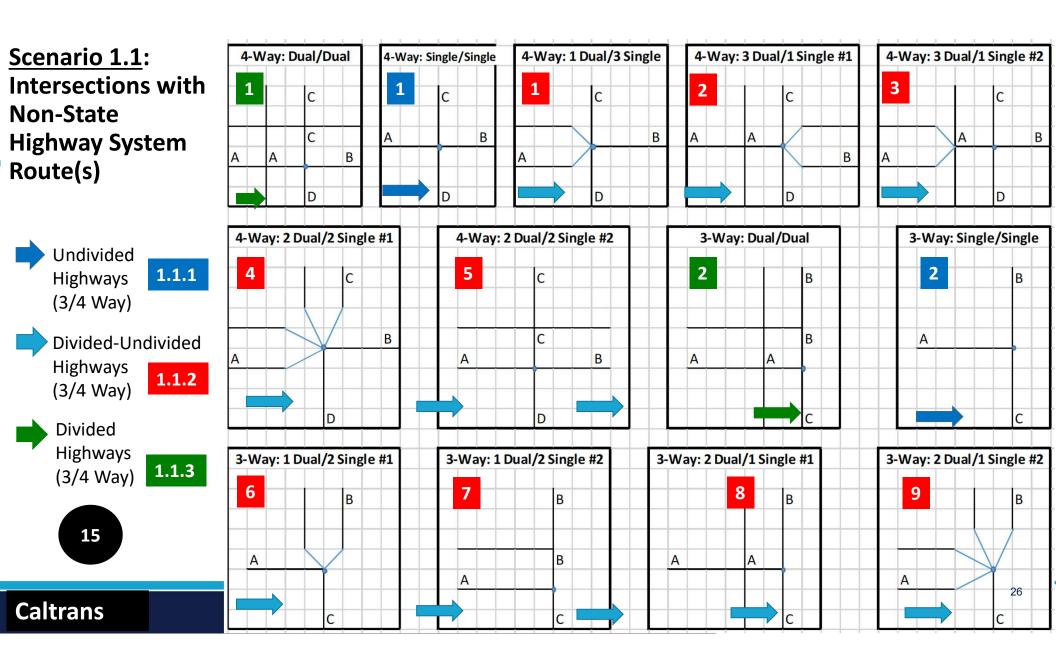
AEGIST Intersection Model

OGC Geographic Data Format (GDF), CityGML, buildingSMART IFC, Generalized Modeling Network Specification (GMNS) and MIRE Standards Compliant

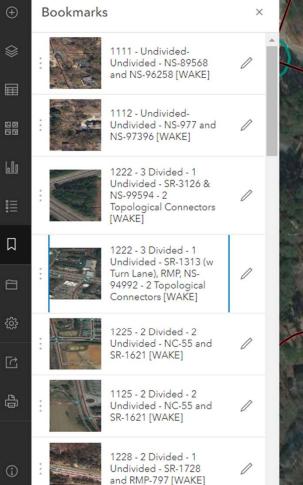
LRS Route, Centerline (Datum), Route-Centerline	(M:N)
Intersection Features	

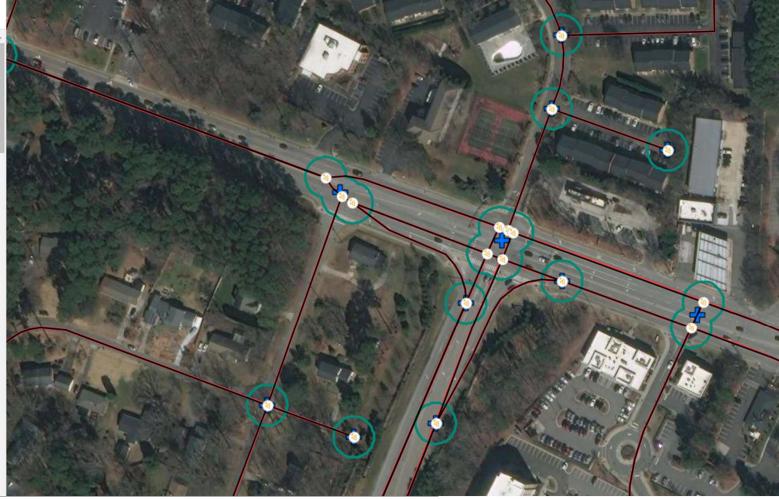
- Junctions (Nodes): At Intersections, TAZ Centroid*, Bridge, Access Points, Median Cuts, Intersection Median Ends, Intersection Leg Begin/End, State/County/Town/Parish Boundaries (Snap Points). Setup as LRS Event.
- Intersection Point at Centroid, at a perpendicular offset from LRS Route (e.g.: Median Cut Intersection, MIRE-126). Setup as GIS Feature.
- » Road Segment: Junction to Junction. Setup as LRS Event. Ideally aligned with NG911 Road Centerlines, with MIRE and NG911 attribution.
- » Intersection Leg: MIRE compliant road approaches.

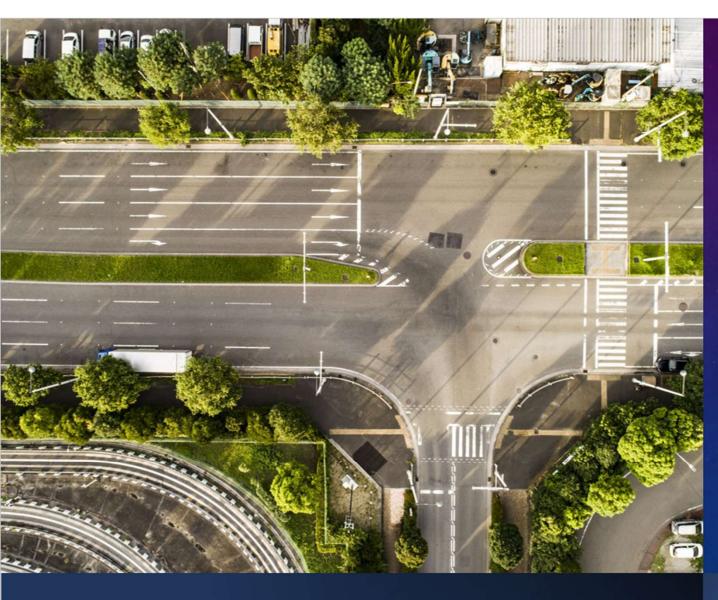

Topological Segments (GIS features)


- » Intersection Connectors
- » Turn Segments/Lanes (HPMS 12, 13)
- » Median Crossovers (MIRE-62)

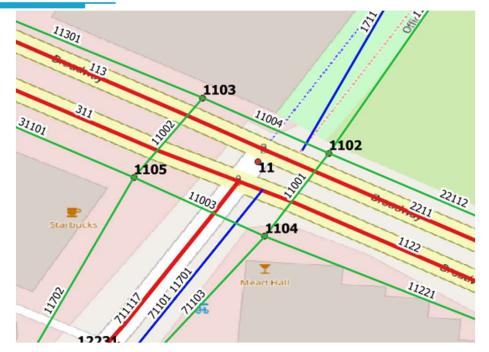
Connectivity, Topology:




Road Segments and Intersection Parent-Child Data Relationship Junctions (Nodes) with Road Segments, Connectors, Turn Segments/Lanes, Median Crossovers, Reverse Route Segments, Inventory Routes, Continuity Intersection Points

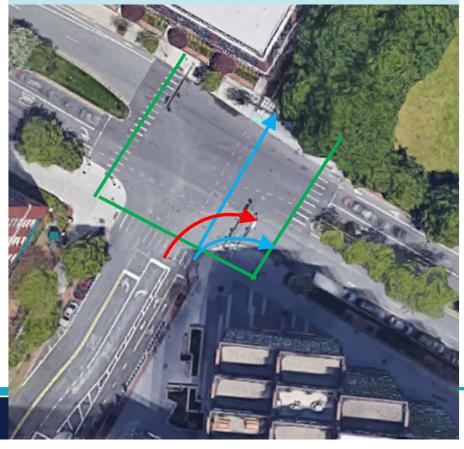

Road Network Data Model LRS/ARNOLD Routes for Creating Junctions and "Associating" them with Intersections

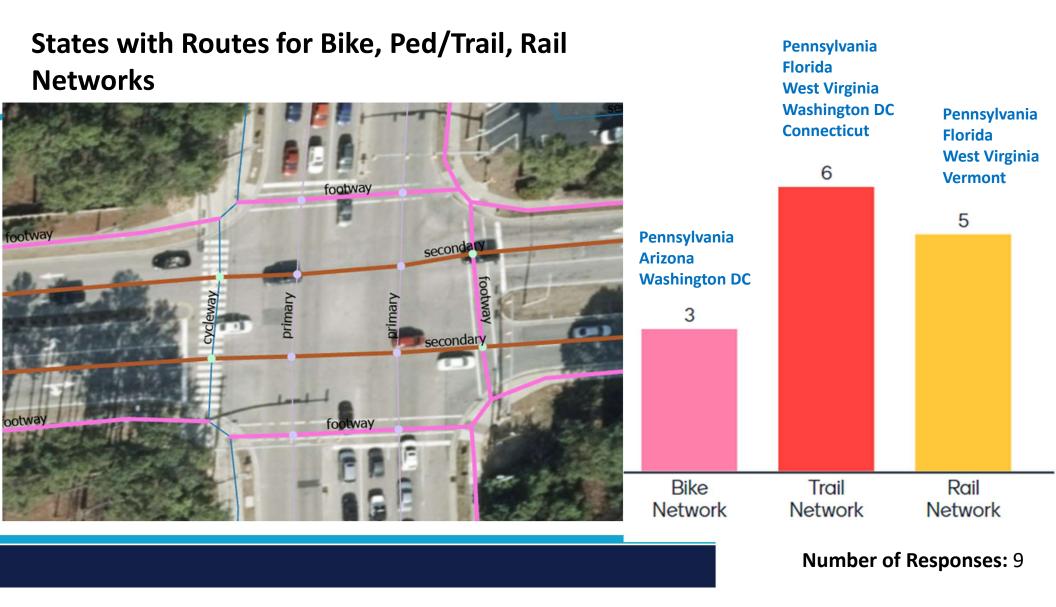
Road Network Data Model LRS/ARNOLD Routes for Creating Junctions and Intersections



DIGITAL TWIN FOR COMPLETE STREETS

- Routes: Motorists, Pedestrians, Trails, Transit (Bus, Rail), Managed Lanes
- Sidewalks
- Bike lanes (or wide paved shoulders)
- Special bus lanes
- Comfortable and accessible Public transportation stops
- Frequent and safe crossing opportunities
- Median islands
- Accessible pedestrian signals
- Curb extensions
- Narrower Travel Lanes
- Roundabouts


and more Transportation Right-of-Way Assets


AEGIST Incorporating GMNS Standard for Modeling Multimodal, MIRE-Compliant Signalized Intersection from ARNOLD and NG911 Roads

Red: Vehicle links and movements Blue: Cycle track links and movements Green: Pedestrian links and crosswalks

Selected Movements from Ames St.

U.S. Department of Transportation Federal Highway Administration

Connecticut and Idaho Data Quality **Rules Automation & Dashboards**

- 1. Portfolio: Inventoried "data assets"
- 2. Data Models & their objective. Enterprise Data Dictionary, Data Quality Dimensions and rules
- **3.** Automating data processing, integration & quality using Data Science Workbench
- 4. Data Governance Dashboards

Are the relations

Within tables and

between?

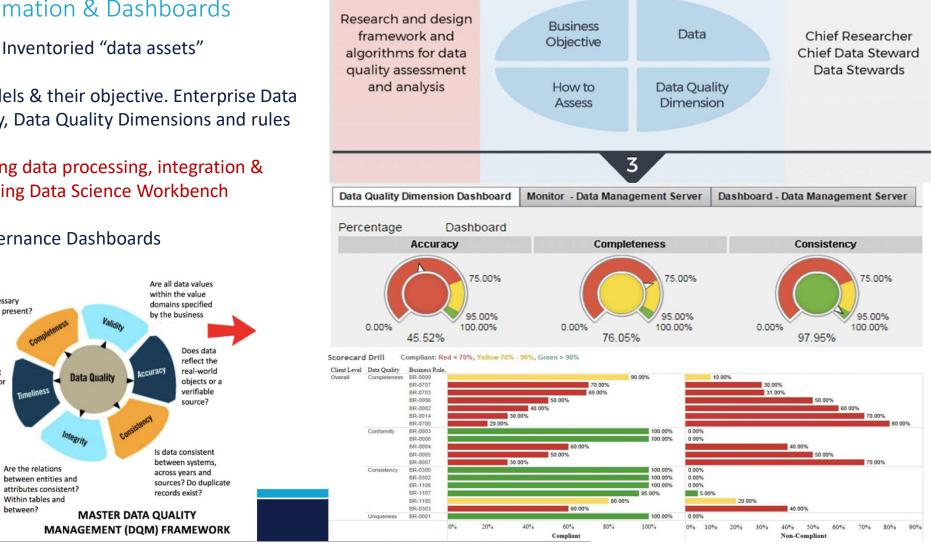
Is all

Is the data being

are historical

not relevant

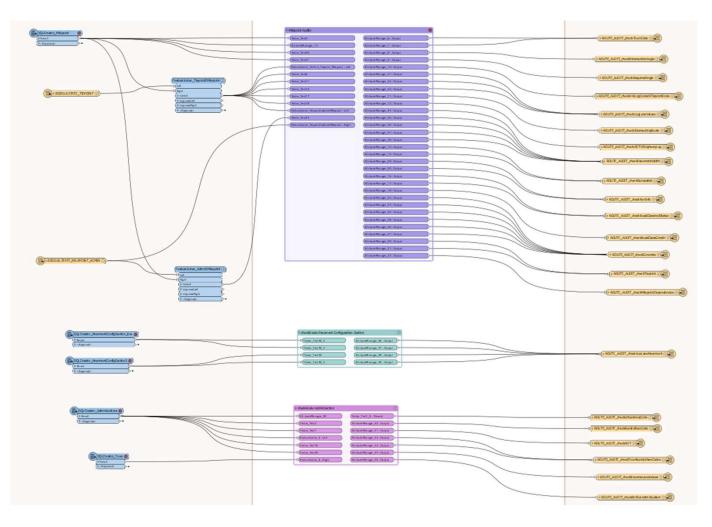
values that are


anymore being

copied over?

updated timely or

necessary


data present?

2

Connecticut DOT

Data Quality Rules Implementation using Feature Manipulation Engine (FME)

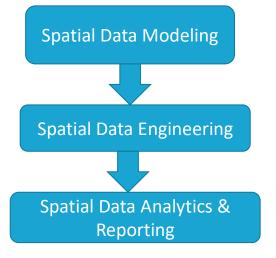
U.S. Department of Transportation Federal Highway Administration

Deploying Data Governance System

Open-Standards Compliant

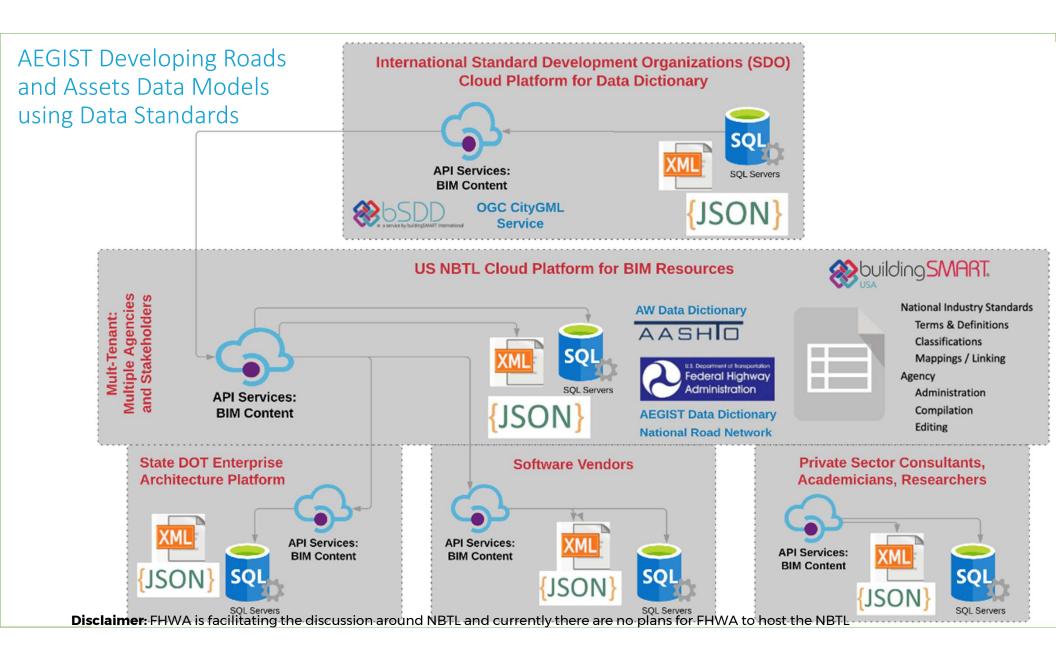
U.S. Department of Transportation Federal Highway Administrati

For On-Premise, Cloud and Edge Computing Data Systems

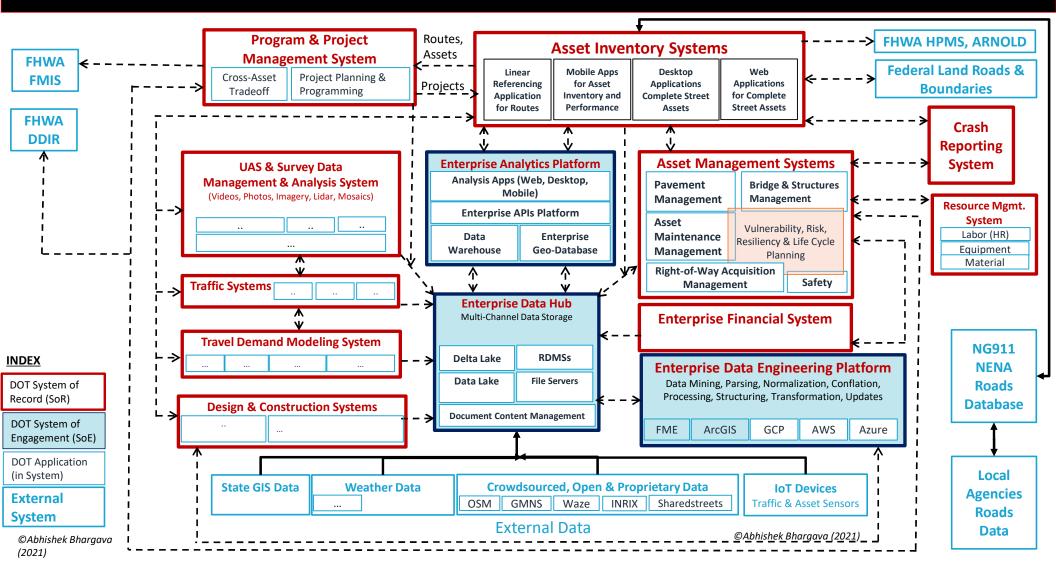

Data Catalog	Object Type Library	Data Dictionary (Properties & Property Sets)	 FHWA, Applications of Enterprise GIS in Transportation Idaho Department of Transportation Pennsylvania Department of Transportation
Data Models Catalog	Applications Catalog	Applications Communication Diagram	 Ohio Department of Transportation Tennessee Department of Transportation
Application Integrations Catalog	Authoritative Data Management Models	Data Quality Governance	FHWA, Identifying Data Frameworks and Governance for Establishing Building Information Modeling (BIM) Standards
Data Integration & Engineering Governance	Data Publication Governance	Data Analytics Governance	
			<u> </u>

IDAHO TRANSPORTATION DEPARTMENT 🖆 Idaho Data Portfolio 🔹										
■ Data Assets ▼ Object Type Library (OTL) Data Diction	onary Data Applications 🚦		Data Assets	Inventory	and Applica	ations				
		Share view).2 Standard Co					
A Asset ID	A= Description	Ξ: Owners ×	Ξ: Stewards			O Priority				
PERFORMANCE GOAL		Owners	_, Slewards	Periormance Goa		• Fridity				
Count 11										
28 1 Bridge	As part of national requirements for our bridge inve	DOT Bridge Department	Program Info Coordinato	Infrastructure Health	Asset Management	High				
29 Culvert		DOT Asset Management	ITD Districts	Infrastructure Health						
30 Horizontal Curve (Alignment)		HPMS Coordinator Doro	HPMS Coordinator Doro	Infrastructure Health						
31 HPMS 0.1 Mile Segments		HPMS Coordinator Doro	HPMS Coordinator Doro	Infrastructure Health						
32 HPMS Sample Sections		HPMS Coordinator Doro	HPMS Coordinator Doro	Infrastructure Health						
33 Maintenance Work Orders		DOT Asset Management	Maintenance Manager S	Infrastructure Health	Asset Management	Medium				
34 Pavement (Road) Surface	Road Surface is maintained on state routes by ITD a	DOT Asset Management	HPMS Coordinator Doro	Infrastructure Health	Asset Management	High				
35 Pavement Distress				Infrastructure Health	Asset Management	High				
36 Pavement Roughness (IRI)	Pavement ratings gathered from longitudinal road p	DOT Roadway	Pavement Data Manager	Infrastructure Health	Asset Management	High				
37 Pavement Structure				Infrastructure Health	Asset Management	High				
38 Snow Plow Data	Data generated from snowplow pings process as pa	DOT Maintenance Supp	Maintenance Manager S	Infrastructure Health	Fleet & Equipment	High				
+										
PERFORMANCE GOAL										
Infrastructure Health Traffic Safety Mobility Count 3										
PERFORMANCE GOAL										
Infrastructure Health Mobility Count 3										
PERFORMANCE GOAL										
Traffic Safety Count 4										
45 Crash Data	Records of crashes with vehicle and severity inform	Office of Highway Safet	Office of Highway Safet	Traffic Safety	Management	High				
46 Intersection Influence Area	A spatial polygon feature that represents the shape	DOT Asset Management	Not Currently Managed	Traffic Safety	Management	Low				
47 Intersection Routes		Not Currently Managed	Not Currently Managed	Traffic Safety	Management	Low				
48 Traffic Counts	Raw Traffic data from counters	DOT Traffic Data	Traffic Data Manager Ma	Traffic Safety	Travel Demand Modeling	High				

Governing Data Using Spatial & Linear Referencing Systems


Spatial Data Modeling in Transactional Systems of Records (SoRs) and Spatial Data Engineering for Publication to Enterprise Data Warehouses, Databases to support **Spatial Data Analytics and Reporting** Via the Systems of Engagement (SoE)

Ensuring Transportation Equity by Preparing Spatial Transportation Data for Decision Makers across All Asset Life Cycle Phases & Processes



© Source: Bhargava et.al. (2021). Identifying Data Frameworks and Governance for Civil Integrated Management. FHWA Research. WSP

AEGIST Building Information Modeling (BIM) for Road Network Data Integration

Questions & Open Discussion

Contact: joseph.hausman@dot.gov FHWA, Office of Planning