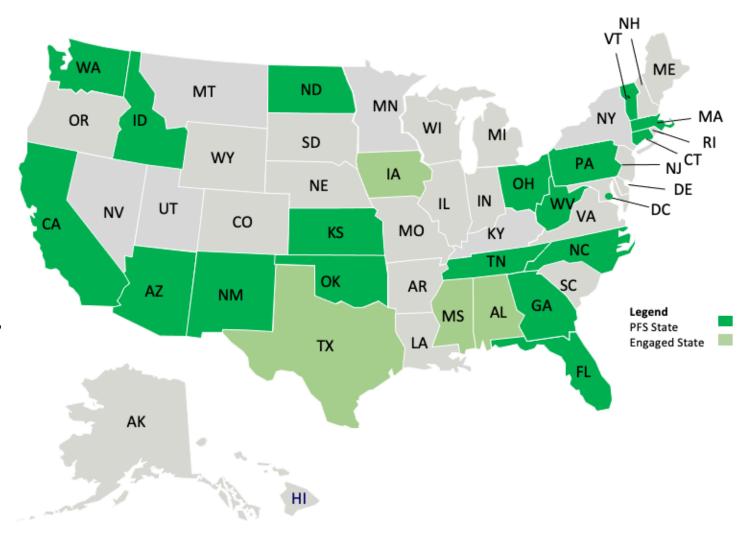
AEGIST: Applications of Enterprise GIS in Transportation TRB-2025

Joe Hausman, FHWA Office of Planning

January 2025


For Questions Contact: joseph.hausman@dot.gov

Disclaimer: Information in this deck is subject to change during the AEGIST Project (2019 – 2024)

About AEGIST

Transportation Pooled Fund (TPF) program

- FHWA Office of Planning and Safety
- States DOTs Participating: 18; Engaged 5
 - » Completed Implementation Projects: 6 States
 - » Active Implementation Projects: 7 States
- Local Agencies and NG911 Stakeholders in California, Pennsylvania
- National Programs: EDC-6 Digital As-Builts,
 BIM for Infrastructure (TPF5-480)
- Standard Development Organizations: buildingSMART and OGC
- Industry Consultants
- Software Vendors

Why AEGIST?

Enabling Data Offices/Councils & Geospatial Information System Units at State DOTs to meet Agency Performance Goals and Objectives of Business Units at their Agencies

Project Planning & Programming

Project
Selection &
Evaluation

Highway Economic Requirements Analysis Statewide Transportation Improvement Program

Asset Management

(Operations and Maintenance)

Pavement Life Cycle Plan

Bridge Life Cycle Plan Maintenance Work Management

Emergency Response Asset Inventory & Routine Inspection Operations

Data Office, Data Governance Council, Data Analytics Unit Information Technology (IT) Unit, Geospatial Information Systems (GIS) Unit

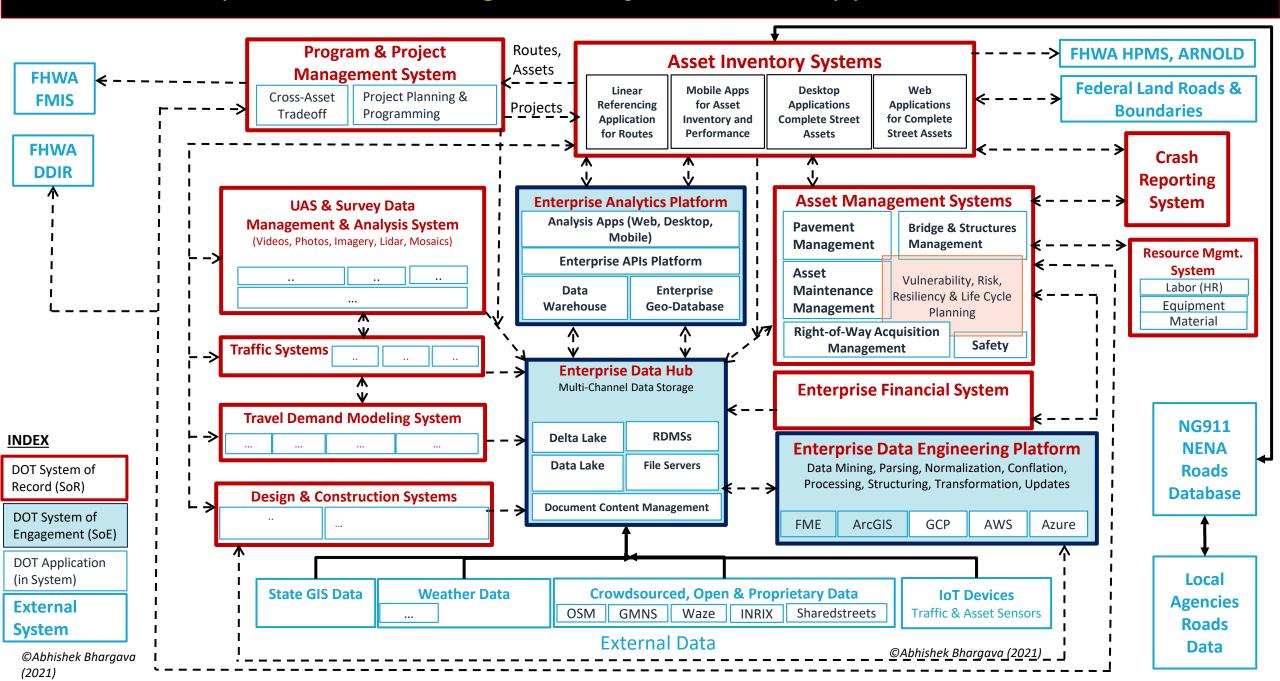
Design & Construction: Digital Delivery

Preliminary
Planning &
Scoping

Asset Information
Models for Preliminary
Design, Traffic and
Structural Analysis

Construction Management

Traffic and Safety


Travel Demand
Modeling
Congestion
Management

Highway Safety
Analysis

Freight / Truck
Routing

Traffic Systems Operations and Management

AEGIST Geospatial Data Management Systems and Applications

State DOT Technical Services Activities Summary			
Summary of Work Activities			
Connecticut DOT	(1) Road Network Data Quality Report Generation using FME (including HPMS Data)(2) Asset Information Requirements and Design to GIS Data Handoff from Digital As-Builts		
Idaho Transportation Department	 Spatial Data Governance Platform (Data Portfolio/Catalog; Data Engineering and Data Analytics) DOT LRS Roads and Federal Land Roads Data Conflation Tool (Python-Based) Strategic Roadmap for Geospatial Data Management 		
Tennessee DOT	 (1) Strategic Roadmap for Spatial Data Management and Governance at Enterprise Level (2) BIM-GIS Integration – Roadway Characteristics Data from Design/BIM Models to Geospatial Information Systems using Digital Twins and Building Information Modeling Tools-Techniques 		
Caltrans	(1) California Roads Sharing (CaRS): Caltrans, CalOES, Local Agencies (NG-911, ARNOLD-HPMS Data)		

Geocoding Data Workflow Automation using Python-Based Geoprocessing Tool

Data Governance for PennDOT Assets: Traffic & Safety, Projects,

Complete Streets: Bike Routes and Pedestrian Network

Speed Limit Data Quality Review using Routes, Signs, Vertical-Horizontal Curves GIS Data

Strategic Roadmap for Roads Data Administration using LRS: 10 Areas Identified, such as:

Local Agency and DOT Roads Integration: NG911 NENA Discussion and Data Exchange with DOT

Road Network Data Model for Travel Demand Modeling & Safety using DOT & Local Data

HPMS 9.0-ARNOLD Rules Compliance, LRS-GIS Database Administration, Data Quality Open Standards Compliant, Machine Readable, Topological Road Network Data Model

Building Information Modeling: Building Spatial Digital Twins with Data from Multiple Systems

Traffic Count Site Selection Using GIS

Pennsylvania

Ohio DOT

(5)

Coordination Efforts

Roadmap; Data Governance

Roadmap; Data Governance

MIRE, National Roads Pilot

e911/NG-911, HPMS 9.0

e911/NG-911, HPMS 9.0

e911/NG-911, HPMS 9.0

MIRE, National Roads Pilot

MIRE, National Roads Pilot

FHWA BIM Projects: BIM National Strategic

FHWA BIM Projects: BIM National Strategic

State DOT Technical Services Activities Summary

Summary of Work Activities

Kansas DOT

North Dakota

Arizona DOT

•		
Georgia DOT	(1) Road Network Data Supply Chain – Roadway Characteristics Data Collection with Local Agencies	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Massachusetts DOT	(1) Automated Intersection and Interchange Data Model for MIRE using LRS Routes and Structures	ARNOLD, HPMS 9.0 MIRE, National Roads Pilot
New Mexico DOT	 ALRS Review and Comparison with AEGIST Data Model (National Road Network- NRN Data Model) Intersection Features Data Engineering and Modeling with Topology and Connectivity using Lidar and Open Street Maps (OSM) data. 	e911/NG-911, HPMS 9.0 MIRE, National Roads Pilot
Washington State DOT	(1) Road Network Data Modeling in Linear Referencing Systems for Enterprise Use(2) Geospatial Database Modernization and Cloud-based Geospatial Data Management	HPMS 9.0, MIRE, National Roads Network
Florida DOT	(1) Intersection Features Data Engineering and Modeling with Topology and Connectivity: Open Standards Compliant, Machine Readable, Topological Road Network Data Model	HPMS 9.0, MIRE, National Roads Network
North Carolina DOT	(1) Linear Referencing System and Road Network Data Governance	HPMS 9.0 National Roads Network

Intersection Features Data Engineering and Modeling with Topology and Connectivity

Using Artificial Intelligence (AI) to process Lidar Data and extract Road Information

(1) Intelligent Route Identifier Architecture for Enterprise Use

Lidar Data Integration into LRS-GIS System and Publication for use by Enterprise Systems.

Coordination Efforts

e911/NG-911, HPMS 9.0

National Roads Network

MIRE,

Building Geospatial Road Network Model

Planning-Level Road Network Model LEVEL 1

Intelligent Routable Road Network Model

LEVEL 2

Multi-Dimensional Road Network Model LEVEL 3

Building Geospatial Road Network Model

LEVEL 1

Planning-Level Road Network Model

Accuracy: 3 - 16 Feet

Centerlines: Single Geometry

Vehicle Routes

Road Attributes: HPMS, MIRE FDE¹⁸

Assets: Bridge, Structures,

Project Location

+ Improved Accuracy: 1 - 3 Feet

Model

+ Few Centerlines: By Direction, Lane

Vehicle Travel Spaces

+ Few Routes: Turn Segments,

Managed Lanes

+ Road Attributes: Turns, Turn Restrictions,

MIRE IDE¹⁰

- + Few Assets: Traffic, ITS
- + Project Assets, Work Zones, Lane Closures
- + Automation, Geoprocessing

LEVEL 3

Multimodal, Digital **Twin Road Network** Model

- + Improved Accuracy: Submeter
- + Few Centerlines: Multimodal, **Dual Geometry**
- + Few Routes: Pedestrian, Bike, Transit
- + Model dimensionality: 2D/3D
- + Road Attributes: Photos, Videos, Lidar, Documents
- + Few Assets: Drainage, Utilities, Sidewalks, Crosswalks,

Pavement Edge

Right-of-Way Line

- + Project Area/Polygon with Assets
- ++ Automations, Geoprocessing

Level 1: Planning-Level Road Network Model

Business Processes and Uses

Guidelines

Bacilloco 10000000 (SIT G G G G G G G G G G G G G G G G G G G
Processes	Use Cases in Category 1
Asset	1. Asset Inventory and Inspections Tracking
Management	2. Maintenance work management
Traffic Management &	3. Traffic data mapping
Systems Operations	4. Traffic Assets location tracking
Highway Safety Analysis	5. Vehicle Route Network Screening for Hotspot Identification
Duningt Diamaina, and	6. Capital projects mapping, scoring and prioritization for programming.
Project Planning and Programming	7. FMIS project mapping on the federal-aid roads in ARNOLD network.
i rogrammig	8. Complete Streets: Assets Mapping & Level-of-Service Analysis
Travel Demand	9. Macroscopic Travel Demand Modeling
Modeling	10. Freight Origin-Destination Demand Modeling
Digital Duais at Dalivam	11. Planning, Scoping and Preliminary Engineering
Digital Project Delivery	12. Environmental Impact Analysis
Federal Reporting and	13. All Public Roads modeled as single geometry with HPMS Road

Attributes. FMIS project mapping.

Level 2: Intelligent Routable Road Network Model

	Business Processes	and Uses
	Processes	Use Cases in Category 2
	Asset Management	1. Disaster management and routing
	Traffic Management &	2. Managed Lanes Operations
,	Systems Operations	3. Congestion Management and Traffic Routing
	Highway Safety Analysis	4. Diagnostic Analysis for Identifying Highway Safety Projects
	Project Planning and	5. I a acting angle ato and mad alread extensisting by the validation and land

Project Planning and **Programming**

- Locating projects and road characteristics by travel direction and lane
- Disaster recovery projects planning

Travel Demand Modeling

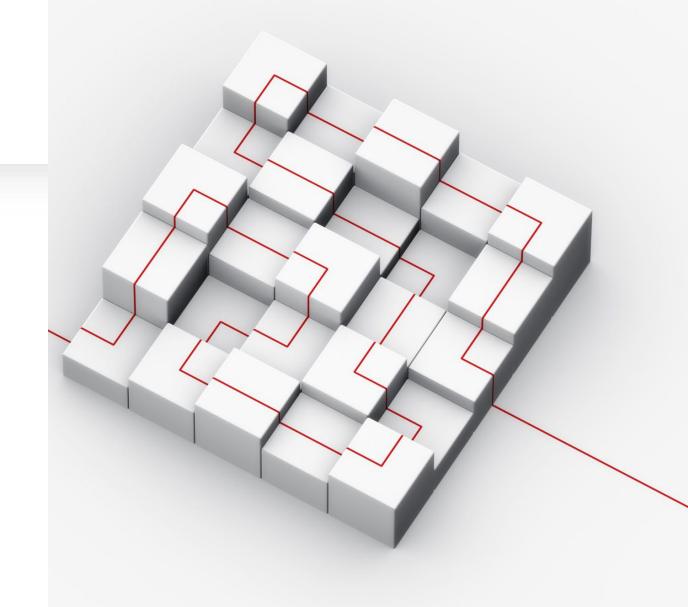
- 7. Mesoscopic Travel Demand Modeling
- Freight Undesignated Parking Analysis
- **Digital Project Delivery**
- Traffic Analysis and Forecasting
- 10. Structural Analysis
- **Federal Reporting and** Guidelines
- 11. Roads with physical barrier and curbed median (500 ft, 4 ft) modeled as Dual Carriage-ways with ITS, MIRE FDEs, HPMS attributes

Level 3: Multi-Dimensional Road Network Model

Business Processes and Uses

	Business Processes	and Uses
	Processes	Use Cases in Category 3
	Asset Management	1. Asset resiliency, Stormwater management and flood impact analysis
	Traffic Management & Systems Operations	2. Real-time traffic data ingestion and mapping to road network for development of digital twin
	Highway Safety Analysis	3. Intersection Conflicts and Movement Analysis
•	Drainet Diamaine and	4. Integrated Multimodal Transportation Planning
	Project Planning and Programming	5. Complete Streets with Digital Twin
		6. Project assets mapping for scoping. Freight Undesignated Parking Analysis
	Travel Demand	8. Microscopic Travel Demand Modeling
	Modeling	9. Right-of-way and Encroachments
D	Digital Project Delivery	10. Survey, Photogrammetry Data Integration
	Digital Project Delivery	11. Construction and Digital As-Builts Data exchange with road inventory systems
	Fodoral Poporting and	12 Building Information Modeling and GIS Integration using Digital As-Builts

Federal Reporting and Guidelines


12. Building Information Modeling and GIS Integration using Digital As-Builts (DABs) to create Enterprise Geospatial Digital Twin & Complete Streets model.

AEGIST Workshop: GIS-T

April 2025

Al-Agent (Chatbot) for:

- Understanding AEGIST Guidelines on Road Network Data Modeling
- Utilizing Artificial Intelligence use for Road Network Data Modeling
- Deploying Data Governance and Management
- Building Level 1, Level 2 and Level 3
 Road Model for Enterprise Business
 Users

